1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// Google Mock - a framework for writing C++ mock classes.
31//
32// The MATCHER* family of macros can be used in a namespace scope to
33// define custom matchers easily.
34//
35// Basic Usage
36// ===========
37//
38// The syntax
39//
40// MATCHER(name, description_string) { statements; }
41//
42// defines a matcher with the given name that executes the statements,
43// which must return a bool to indicate if the match succeeds. Inside
44// the statements, you can refer to the value being matched by 'arg',
45// and refer to its type by 'arg_type'.
46//
47// The description string documents what the matcher does, and is used
48// to generate the failure message when the match fails. Since a
49// MATCHER() is usually defined in a header file shared by multiple
50// C++ source files, we require the description to be a C-string
51// literal to avoid possible side effects. It can be empty, in which
52// case we'll use the sequence of words in the matcher name as the
53// description.
54//
55// For example:
56//
57// MATCHER(IsEven, "") { return (arg % 2) == 0; }
58//
59// allows you to write
60//
61// // Expects mock_foo.Bar(n) to be called where n is even.
62// EXPECT_CALL(mock_foo, Bar(IsEven()));
63//
64// or,
65//
66// // Verifies that the value of some_expression is even.
67// EXPECT_THAT(some_expression, IsEven());
68//
69// If the above assertion fails, it will print something like:
70//
71// Value of: some_expression
72// Expected: is even
73// Actual: 7
74//
75// where the description "is even" is automatically calculated from the
76// matcher name IsEven.
77//
78// Argument Type
79// =============
80//
81// Note that the type of the value being matched (arg_type) is
82// determined by the context in which you use the matcher and is
83// supplied to you by the compiler, so you don't need to worry about
84// declaring it (nor can you). This allows the matcher to be
85// polymorphic. For example, IsEven() can be used to match any type
86// where the value of "(arg % 2) == 0" can be implicitly converted to
87// a bool. In the "Bar(IsEven())" example above, if method Bar()
88// takes an int, 'arg_type' will be int; if it takes an unsigned long,
89// 'arg_type' will be unsigned long; and so on.
90//
91// Parameterizing Matchers
92// =======================
93//
94// Sometimes you'll want to parameterize the matcher. For that you
95// can use another macro:
96//
97// MATCHER_P(name, param_name, description_string) { statements; }
98//
99// For example:
100//
101// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
102//
103// will allow you to write:
104//
105// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
106//
107// which may lead to this message (assuming n is 10):
108//
109// Value of: Blah("a")
110// Expected: has absolute value 10
111// Actual: -9
112//
113// Note that both the matcher description and its parameter are
114// printed, making the message human-friendly.
115//
116// In the matcher definition body, you can write 'foo_type' to
117// reference the type of a parameter named 'foo'. For example, in the
118// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
119// 'value_type' to refer to the type of 'value'.
120//
121// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
122// support multi-parameter matchers.
123//
124// Describing Parameterized Matchers
125// =================================
126//
127// The last argument to MATCHER*() is a string-typed expression. The
128// expression can reference all of the matcher's parameters and a
129// special bool-typed variable named 'negation'. When 'negation' is
130// false, the expression should evaluate to the matcher's description;
131// otherwise it should evaluate to the description of the negation of
132// the matcher. For example,
133//
134// using testing::PrintToString;
135//
136// MATCHER_P2(InClosedRange, low, hi,
137// std::string(negation ? "is not" : "is") + " in range [" +
138// PrintToString(low) + ", " + PrintToString(hi) + "]") {
139// return low <= arg && arg <= hi;
140// }
141// ...
142// EXPECT_THAT(3, InClosedRange(4, 6));
143// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
144//
145// would generate two failures that contain the text:
146//
147// Expected: is in range [4, 6]
148// ...
149// Expected: is not in range [2, 4]
150//
151// If you specify "" as the description, the failure message will
152// contain the sequence of words in the matcher name followed by the
153// parameter values printed as a tuple. For example,
154//
155// MATCHER_P2(InClosedRange, low, hi, "") { ... }
156// ...
157// EXPECT_THAT(3, InClosedRange(4, 6));
158// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
159//
160// would generate two failures that contain the text:
161//
162// Expected: in closed range (4, 6)
163// ...
164// Expected: not (in closed range (2, 4))
165//
166// Types of Matcher Parameters
167// ===========================
168//
169// For the purpose of typing, you can view
170//
171// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
172//
173// as shorthand for
174//
175// template <typename p1_type, ..., typename pk_type>
176// FooMatcherPk<p1_type, ..., pk_type>
177// Foo(p1_type p1, ..., pk_type pk) { ... }
178//
179// When you write Foo(v1, ..., vk), the compiler infers the types of
180// the parameters v1, ..., and vk for you. If you are not happy with
181// the result of the type inference, you can specify the types by
182// explicitly instantiating the template, as in Foo<long, bool>(5,
183// false). As said earlier, you don't get to (or need to) specify
184// 'arg_type' as that's determined by the context in which the matcher
185// is used. You can assign the result of expression Foo(p1, ..., pk)
186// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
187// can be useful when composing matchers.
188//
189// While you can instantiate a matcher template with reference types,
190// passing the parameters by pointer usually makes your code more
191// readable. If, however, you still want to pass a parameter by
192// reference, be aware that in the failure message generated by the
193// matcher you will see the value of the referenced object but not its
194// address.
195//
196// Explaining Match Results
197// ========================
198//
199// Sometimes the matcher description alone isn't enough to explain why
200// the match has failed or succeeded. For example, when expecting a
201// long string, it can be very helpful to also print the diff between
202// the expected string and the actual one. To achieve that, you can
203// optionally stream additional information to a special variable
204// named result_listener, whose type is a pointer to class
205// MatchResultListener:
206//
207// MATCHER_P(EqualsLongString, str, "") {
208// if (arg == str) return true;
209//
210// *result_listener << "the difference: "
211/// << DiffStrings(str, arg);
212// return false;
213// }
214//
215// Overloading Matchers
216// ====================
217//
218// You can overload matchers with different numbers of parameters:
219//
220// MATCHER_P(Blah, a, description_string1) { ... }
221// MATCHER_P2(Blah, a, b, description_string2) { ... }
222//
223// Caveats
224// =======
225//
226// When defining a new matcher, you should also consider implementing
227// MatcherInterface or using MakePolymorphicMatcher(). These
228// approaches require more work than the MATCHER* macros, but also
229// give you more control on the types of the value being matched and
230// the matcher parameters, which may leads to better compiler error
231// messages when the matcher is used wrong. They also allow
232// overloading matchers based on parameter types (as opposed to just
233// based on the number of parameters).
234//
235// MATCHER*() can only be used in a namespace scope as templates cannot be
236// declared inside of a local class.
237//
238// More Information
239// ================
240//
241// To learn more about using these macros, please search for 'MATCHER'
242// on
243// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
244//
245// This file also implements some commonly used argument matchers. More
246// matchers can be defined by the user implementing the
247// MatcherInterface<T> interface if necessary.
248//
249// See googletest/include/gtest/gtest-matchers.h for the definition of class
250// Matcher, class MatcherInterface, and others.
251
252// IWYU pragma: private, include "gmock/gmock.h"
253// IWYU pragma: friend gmock/.*
254
255#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257
258#include <algorithm>
259#include <cmath>
260#include <cstddef>
261#include <exception>
262#include <functional>
263#include <initializer_list>
264#include <ios>
265#include <iterator>
266#include <limits>
267#include <memory>
268#include <ostream> // NOLINT
269#include <sstream>
270#include <string>
271#include <type_traits>
272#include <utility>
273#include <vector>
274
275#include "gmock/internal/gmock-internal-utils.h"
276#include "gmock/internal/gmock-port.h"
277#include "gmock/internal/gmock-pp.h"
278#include "gtest/gtest.h"
279
280// MSVC warning C5046 is new as of VS2017 version 15.8.
281#if defined(_MSC_VER) && _MSC_VER >= 1915
282#define GMOCK_MAYBE_5046_ 5046
283#else
284#define GMOCK_MAYBE_5046_
285#endif
286
287GTEST_DISABLE_MSC_WARNINGS_PUSH_(
288 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
289 clients of class B */
290 /* Symbol involving type with internal linkage not defined */)
291
292namespace testing {
293
294// To implement a matcher Foo for type T, define:
295// 1. a class FooMatcherImpl that implements the
296// MatcherInterface<T> interface, and
297// 2. a factory function that creates a Matcher<T> object from a
298// FooMatcherImpl*.
299//
300// The two-level delegation design makes it possible to allow a user
301// to write "v" instead of "Eq(v)" where a Matcher is expected, which
302// is impossible if we pass matchers by pointers. It also eases
303// ownership management as Matcher objects can now be copied like
304// plain values.
305
306// A match result listener that stores the explanation in a string.
307class StringMatchResultListener : public MatchResultListener {
308 public:
309 StringMatchResultListener() : MatchResultListener(&ss_) {}
310
311 // Returns the explanation accumulated so far.
312 std::string str() const { return ss_.str(); }
313
314 // Clears the explanation accumulated so far.
315 void Clear() { ss_.str(s: ""); }
316
317 private:
318 ::std::stringstream ss_;
319
320 StringMatchResultListener(const StringMatchResultListener&) = delete;
321 StringMatchResultListener& operator=(const StringMatchResultListener&) =
322 delete;
323};
324
325// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
326// and MUST NOT BE USED IN USER CODE!!!
327namespace internal {
328
329// The MatcherCastImpl class template is a helper for implementing
330// MatcherCast(). We need this helper in order to partially
331// specialize the implementation of MatcherCast() (C++ allows
332// class/struct templates to be partially specialized, but not
333// function templates.).
334
335// This general version is used when MatcherCast()'s argument is a
336// polymorphic matcher (i.e. something that can be converted to a
337// Matcher but is not one yet; for example, Eq(value)) or a value (for
338// example, "hello").
339template <typename T, typename M>
340class MatcherCastImpl {
341 public:
342 static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
343 // M can be a polymorphic matcher, in which case we want to use
344 // its conversion operator to create Matcher<T>. Or it can be a value
345 // that should be passed to the Matcher<T>'s constructor.
346 //
347 // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
348 // polymorphic matcher because it'll be ambiguous if T has an implicit
349 // constructor from M (this usually happens when T has an implicit
350 // constructor from any type).
351 //
352 // It won't work to unconditionally implicit_cast
353 // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
354 // a user-defined conversion from M to T if one exists (assuming M is
355 // a value).
356 return CastImpl(polymorphic_matcher_or_value,
357 std::is_convertible<M, Matcher<T>>{},
358 std::is_convertible<M, T>{});
359 }
360
361 private:
362 template <bool Ignore>
363 static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
364 std::true_type /* convertible_to_matcher */,
365 std::integral_constant<bool, Ignore>) {
366 // M is implicitly convertible to Matcher<T>, which means that either
367 // M is a polymorphic matcher or Matcher<T> has an implicit constructor
368 // from M. In both cases using the implicit conversion will produce a
369 // matcher.
370 //
371 // Even if T has an implicit constructor from M, it won't be called because
372 // creating Matcher<T> would require a chain of two user-defined conversions
373 // (first to create T from M and then to create Matcher<T> from T).
374 return polymorphic_matcher_or_value;
375 }
376
377 // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
378 // matcher. It's a value of a type implicitly convertible to T. Use direct
379 // initialization to create a matcher.
380 static Matcher<T> CastImpl(const M& value,
381 std::false_type /* convertible_to_matcher */,
382 std::true_type /* convertible_to_T */) {
383 return Matcher<T>(ImplicitCast_<T>(value));
384 }
385
386 // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
387 // polymorphic matcher Eq(value) in this case.
388 //
389 // Note that we first attempt to perform an implicit cast on the value and
390 // only fall back to the polymorphic Eq() matcher afterwards because the
391 // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
392 // which might be undefined even when Rhs is implicitly convertible to Lhs
393 // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
394 //
395 // We don't define this method inline as we need the declaration of Eq().
396 static Matcher<T> CastImpl(const M& value,
397 std::false_type /* convertible_to_matcher */,
398 std::false_type /* convertible_to_T */);
399};
400
401// This more specialized version is used when MatcherCast()'s argument
402// is already a Matcher. This only compiles when type T can be
403// statically converted to type U.
404template <typename T, typename U>
405class MatcherCastImpl<T, Matcher<U>> {
406 public:
407 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
408 return Matcher<T>(new Impl(source_matcher));
409 }
410
411 private:
412 // If it's possible to implicitly convert a `const T&` to U, then `Impl` can
413 // take that as input to avoid a copy. Otherwise, such as when `T` is a
414 // non-const reference type or a type explicitly constructible only from a
415 // non-const reference, then `Impl` must use `T` as-is (potentially copying).
416 using ImplArgT =
417 typename std::conditional<std::is_convertible<const T&, const U&>::value,
418 const T&, T>::type;
419
420 class Impl : public MatcherInterface<ImplArgT> {
421 public:
422 explicit Impl(const Matcher<U>& source_matcher)
423 : source_matcher_(source_matcher) {}
424
425 // We delegate the matching logic to the source matcher.
426 bool MatchAndExplain(ImplArgT x,
427 MatchResultListener* listener) const override {
428 using FromType = typename std::remove_cv<typename std::remove_pointer<
429 typename std::remove_reference<T>::type>::type>::type;
430 using ToType = typename std::remove_cv<typename std::remove_pointer<
431 typename std::remove_reference<U>::type>::type>::type;
432 // Do not allow implicitly converting base*/& to derived*/&.
433 static_assert(
434 // Do not trigger if only one of them is a pointer. That implies a
435 // regular conversion and not a down_cast.
436 (std::is_pointer<typename std::remove_reference<T>::type>::value !=
437 std::is_pointer<typename std::remove_reference<U>::type>::value) ||
438 std::is_same<FromType, ToType>::value ||
439 !std::is_base_of<FromType, ToType>::value,
440 "Can't implicitly convert from <base> to <derived>");
441
442 // Do the cast to `U` explicitly if necessary.
443 // Otherwise, let implicit conversions do the trick.
444 using CastType = typename std::conditional<
445 std::is_convertible<ImplArgT&, const U&>::value, ImplArgT&, U>::type;
446
447 return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
448 listener);
449 }
450
451 void DescribeTo(::std::ostream* os) const override {
452 source_matcher_.DescribeTo(os);
453 }
454
455 void DescribeNegationTo(::std::ostream* os) const override {
456 source_matcher_.DescribeNegationTo(os);
457 }
458
459 private:
460 const Matcher<U> source_matcher_;
461 };
462};
463
464// This even more specialized version is used for efficiently casting
465// a matcher to its own type.
466template <typename T>
467class MatcherCastImpl<T, Matcher<T>> {
468 public:
469 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
470};
471
472// Template specialization for parameterless Matcher.
473template <typename Derived>
474class MatcherBaseImpl {
475 public:
476 MatcherBaseImpl() = default;
477
478 template <typename T>
479 operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
480 return ::testing::Matcher<T>(new
481 typename Derived::template gmock_Impl<T>());
482 }
483};
484
485// Template specialization for Matcher with parameters.
486template <template <typename...> class Derived, typename... Ts>
487class MatcherBaseImpl<Derived<Ts...>> {
488 public:
489 // Mark the constructor explicit for single argument T to avoid implicit
490 // conversions.
491 template <typename E = std::enable_if<sizeof...(Ts) == 1>,
492 typename E::type* = nullptr>
493 explicit MatcherBaseImpl(Ts... params)
494 : params_(std::forward<Ts>(params)...) {}
495 template <typename E = std::enable_if<sizeof...(Ts) != 1>,
496 typename = typename E::type>
497 MatcherBaseImpl(Ts... params) // NOLINT
498 : params_(std::forward<Ts>(params)...) {}
499
500 template <typename F>
501 operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
502 return Apply<F>(std::make_index_sequence<sizeof...(Ts)>{});
503 }
504
505 private:
506 template <typename F, std::size_t... tuple_ids>
507 ::testing::Matcher<F> Apply(std::index_sequence<tuple_ids...>) const {
508 return ::testing::Matcher<F>(
509 new typename Derived<Ts...>::template gmock_Impl<F>(
510 std::get<tuple_ids>(params_)...));
511 }
512
513 const std::tuple<Ts...> params_;
514};
515
516} // namespace internal
517
518// In order to be safe and clear, casting between different matcher
519// types is done explicitly via MatcherCast<T>(m), which takes a
520// matcher m and returns a Matcher<T>. It compiles only when T can be
521// statically converted to the argument type of m.
522template <typename T, typename M>
523inline Matcher<T> MatcherCast(const M& matcher) {
524 return internal::MatcherCastImpl<T, M>::Cast(matcher);
525}
526
527// This overload handles polymorphic matchers and values only since
528// monomorphic matchers are handled by the next one.
529template <typename T, typename M>
530inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
531 return MatcherCast<T>(polymorphic_matcher_or_value);
532}
533
534// This overload handles monomorphic matchers.
535//
536// In general, if type T can be implicitly converted to type U, we can
537// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
538// contravariant): just keep a copy of the original Matcher<U>, convert the
539// argument from type T to U, and then pass it to the underlying Matcher<U>.
540// The only exception is when U is a non-const reference and T is not, as the
541// underlying Matcher<U> may be interested in the argument's address, which
542// cannot be preserved in the conversion from T to U (since a copy of the input
543// T argument would be required to provide a non-const reference U).
544template <typename T, typename U>
545inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
546 // Enforce that T can be implicitly converted to U.
547 static_assert(std::is_convertible<const T&, const U&>::value,
548 "T must be implicitly convertible to U (and T must be a "
549 "non-const reference if U is a non-const reference)");
550 // In case both T and U are arithmetic types, enforce that the
551 // conversion is not lossy.
552 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
553 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
554 constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
555 constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
556 static_assert(
557 kTIsOther || kUIsOther ||
558 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
559 "conversion of arithmetic types must be lossless");
560 return MatcherCast<T>(matcher);
561}
562
563// A<T>() returns a matcher that matches any value of type T.
564template <typename T>
565Matcher<T> A();
566
567// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
568// and MUST NOT BE USED IN USER CODE!!!
569namespace internal {
570
571// Used per go/ranked-overloads for dispatching.
572struct Rank0 {};
573struct Rank1 : Rank0 {};
574using HighestRank = Rank1;
575
576// If the explanation is not empty, prints it to the ostream.
577inline void PrintIfNotEmpty(const std::string& explanation,
578 ::std::ostream* os) {
579 if (!explanation.empty() && os != nullptr) {
580 *os << ", " << explanation;
581 }
582}
583
584// Returns true if the given type name is easy to read by a human.
585// This is used to decide whether printing the type of a value might
586// be helpful.
587inline bool IsReadableTypeName(const std::string& type_name) {
588 // We consider a type name readable if it's short or doesn't contain
589 // a template or function type.
590 return (type_name.length() <= 20 ||
591 type_name.find_first_of(s: "<(") == std::string::npos);
592}
593
594// Matches the value against the given matcher, prints the value and explains
595// the match result to the listener. Returns the match result.
596// 'listener' must not be NULL.
597// Value cannot be passed by const reference, because some matchers take a
598// non-const argument.
599template <typename Value, typename T>
600bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
601 MatchResultListener* listener) {
602 if (!listener->IsInterested()) {
603 // If the listener is not interested, we do not need to construct the
604 // inner explanation.
605 return matcher.Matches(value);
606 }
607
608 StringMatchResultListener inner_listener;
609 const bool match = matcher.MatchAndExplain(value, &inner_listener);
610
611 UniversalPrint(value, listener->stream());
612#if GTEST_HAS_RTTI
613 const std::string& type_name = GetTypeName<Value>();
614 if (IsReadableTypeName(type_name))
615 *listener->stream() << " (of type " << type_name << ")";
616#endif
617 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
618
619 return match;
620}
621
622// An internal helper class for doing compile-time loop on a tuple's
623// fields.
624template <size_t N>
625class TuplePrefix {
626 public:
627 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
628 // if and only if the first N fields of matcher_tuple matches
629 // the first N fields of value_tuple, respectively.
630 template <typename MatcherTuple, typename ValueTuple>
631 static bool Matches(const MatcherTuple& matcher_tuple,
632 const ValueTuple& value_tuple) {
633 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
634 std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
635 }
636
637 // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
638 // describes failures in matching the first N fields of matchers
639 // against the first N fields of values. If there is no failure,
640 // nothing will be streamed to os.
641 template <typename MatcherTuple, typename ValueTuple>
642 static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
643 const ValueTuple& values,
644 ::std::ostream* os) {
645 // First, describes failures in the first N - 1 fields.
646 TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
647
648 // Then describes the failure (if any) in the (N - 1)-th (0-based)
649 // field.
650 typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
651 std::get<N - 1>(matchers);
652 typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
653 const Value& value = std::get<N - 1>(values);
654 StringMatchResultListener listener;
655 if (!matcher.MatchAndExplain(value, &listener)) {
656 *os << " Expected arg #" << N - 1 << ": ";
657 std::get<N - 1>(matchers).DescribeTo(os);
658 *os << "\n Actual: ";
659 // We remove the reference in type Value to prevent the
660 // universal printer from printing the address of value, which
661 // isn't interesting to the user most of the time. The
662 // matcher's MatchAndExplain() method handles the case when
663 // the address is interesting.
664 internal::UniversalPrint(value, os);
665 PrintIfNotEmpty(explanation: listener.str(), os);
666 *os << "\n";
667 }
668 }
669};
670
671// The base case.
672template <>
673class TuplePrefix<0> {
674 public:
675 template <typename MatcherTuple, typename ValueTuple>
676 static bool Matches(const MatcherTuple& /* matcher_tuple */,
677 const ValueTuple& /* value_tuple */) {
678 return true;
679 }
680
681 template <typename MatcherTuple, typename ValueTuple>
682 static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
683 const ValueTuple& /* values */,
684 ::std::ostream* /* os */) {}
685};
686
687// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
688// all matchers in matcher_tuple match the corresponding fields in
689// value_tuple. It is a compiler error if matcher_tuple and
690// value_tuple have different number of fields or incompatible field
691// types.
692template <typename MatcherTuple, typename ValueTuple>
693bool TupleMatches(const MatcherTuple& matcher_tuple,
694 const ValueTuple& value_tuple) {
695 // Makes sure that matcher_tuple and value_tuple have the same
696 // number of fields.
697 static_assert(std::tuple_size<MatcherTuple>::value ==
698 std::tuple_size<ValueTuple>::value,
699 "matcher and value have different numbers of fields");
700 return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
701 value_tuple);
702}
703
704// Describes failures in matching matchers against values. If there
705// is no failure, nothing will be streamed to os.
706template <typename MatcherTuple, typename ValueTuple>
707void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
708 const ValueTuple& values, ::std::ostream* os) {
709 TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
710 matchers, values, os);
711}
712
713// TransformTupleValues and its helper.
714//
715// TransformTupleValuesHelper hides the internal machinery that
716// TransformTupleValues uses to implement a tuple traversal.
717template <typename Tuple, typename Func, typename OutIter>
718class TransformTupleValuesHelper {
719 private:
720 typedef ::std::tuple_size<Tuple> TupleSize;
721
722 public:
723 // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
724 // Returns the final value of 'out' in case the caller needs it.
725 static OutIter Run(Func f, const Tuple& t, OutIter out) {
726 return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
727 }
728
729 private:
730 template <typename Tup, size_t kRemainingSize>
731 struct IterateOverTuple {
732 OutIter operator()(Func f, const Tup& t, OutIter out) const {
733 *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
734 return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
735 }
736 };
737 template <typename Tup>
738 struct IterateOverTuple<Tup, 0> {
739 OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const {
740 return out;
741 }
742 };
743};
744
745// Successively invokes 'f(element)' on each element of the tuple 't',
746// appending each result to the 'out' iterator. Returns the final value
747// of 'out'.
748template <typename Tuple, typename Func, typename OutIter>
749OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
750 return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
751}
752
753// Implements _, a matcher that matches any value of any
754// type. This is a polymorphic matcher, so we need a template type
755// conversion operator to make it appearing as a Matcher<T> for any
756// type T.
757class AnythingMatcher {
758 public:
759 using is_gtest_matcher = void;
760
761 template <typename T>
762 bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
763 return true;
764 }
765 void DescribeTo(std::ostream* os) const { *os << "is anything"; }
766 void DescribeNegationTo(::std::ostream* os) const {
767 // This is mostly for completeness' sake, as it's not very useful
768 // to write Not(A<bool>()). However we cannot completely rule out
769 // such a possibility, and it doesn't hurt to be prepared.
770 *os << "never matches";
771 }
772};
773
774// Implements the polymorphic IsNull() matcher, which matches any raw or smart
775// pointer that is NULL.
776class IsNullMatcher {
777 public:
778 template <typename Pointer>
779 bool MatchAndExplain(const Pointer& p,
780 MatchResultListener* /* listener */) const {
781 return p == nullptr;
782 }
783
784 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
785 void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; }
786};
787
788// Implements the polymorphic NotNull() matcher, which matches any raw or smart
789// pointer that is not NULL.
790class NotNullMatcher {
791 public:
792 template <typename Pointer>
793 bool MatchAndExplain(const Pointer& p,
794 MatchResultListener* /* listener */) const {
795 return p != nullptr;
796 }
797
798 void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
799 void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
800};
801
802// Ref(variable) matches any argument that is a reference to
803// 'variable'. This matcher is polymorphic as it can match any
804// super type of the type of 'variable'.
805//
806// The RefMatcher template class implements Ref(variable). It can
807// only be instantiated with a reference type. This prevents a user
808// from mistakenly using Ref(x) to match a non-reference function
809// argument. For example, the following will righteously cause a
810// compiler error:
811//
812// int n;
813// Matcher<int> m1 = Ref(n); // This won't compile.
814// Matcher<int&> m2 = Ref(n); // This will compile.
815template <typename T>
816class RefMatcher;
817
818template <typename T>
819class RefMatcher<T&> {
820 // Google Mock is a generic framework and thus needs to support
821 // mocking any function types, including those that take non-const
822 // reference arguments. Therefore the template parameter T (and
823 // Super below) can be instantiated to either a const type or a
824 // non-const type.
825 public:
826 // RefMatcher() takes a T& instead of const T&, as we want the
827 // compiler to catch using Ref(const_value) as a matcher for a
828 // non-const reference.
829 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
830
831 template <typename Super>
832 operator Matcher<Super&>() const {
833 // By passing object_ (type T&) to Impl(), which expects a Super&,
834 // we make sure that Super is a super type of T. In particular,
835 // this catches using Ref(const_value) as a matcher for a
836 // non-const reference, as you cannot implicitly convert a const
837 // reference to a non-const reference.
838 return MakeMatcher(new Impl<Super>(object_));
839 }
840
841 private:
842 template <typename Super>
843 class Impl : public MatcherInterface<Super&> {
844 public:
845 explicit Impl(Super& x) : object_(x) {} // NOLINT
846
847 // MatchAndExplain() takes a Super& (as opposed to const Super&)
848 // in order to match the interface MatcherInterface<Super&>.
849 bool MatchAndExplain(Super& x,
850 MatchResultListener* listener) const override {
851 *listener << "which is located @" << static_cast<const void*>(&x);
852 return &x == &object_;
853 }
854
855 void DescribeTo(::std::ostream* os) const override {
856 *os << "references the variable ";
857 UniversalPrinter<Super&>::Print(object_, os);
858 }
859
860 void DescribeNegationTo(::std::ostream* os) const override {
861 *os << "does not reference the variable ";
862 UniversalPrinter<Super&>::Print(object_, os);
863 }
864
865 private:
866 const Super& object_;
867 };
868
869 T& object_;
870};
871
872// Polymorphic helper functions for narrow and wide string matchers.
873inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
874 return String::CaseInsensitiveCStringEquals(lhs, rhs);
875}
876
877inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
878 const wchar_t* rhs) {
879 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
880}
881
882// String comparison for narrow or wide strings that can have embedded NUL
883// characters.
884template <typename StringType>
885bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) {
886 // Are the heads equal?
887 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
888 return false;
889 }
890
891 // Skip the equal heads.
892 const typename StringType::value_type nul = 0;
893 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
894
895 // Are we at the end of either s1 or s2?
896 if (i1 == StringType::npos || i2 == StringType::npos) {
897 return i1 == i2;
898 }
899
900 // Are the tails equal?
901 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
902}
903
904// String matchers.
905
906// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
907template <typename StringType>
908class StrEqualityMatcher {
909 public:
910 StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
911 : string_(std::move(str)),
912 expect_eq_(expect_eq),
913 case_sensitive_(case_sensitive) {}
914
915#if GTEST_INTERNAL_HAS_STRING_VIEW
916 bool MatchAndExplain(const internal::StringView& s,
917 MatchResultListener* listener) const {
918 // This should fail to compile if StringView is used with wide
919 // strings.
920 const StringType& str = std::string(s);
921 return MatchAndExplain(str, listener);
922 }
923#endif // GTEST_INTERNAL_HAS_STRING_VIEW
924
925 // Accepts pointer types, particularly:
926 // const char*
927 // char*
928 // const wchar_t*
929 // wchar_t*
930 template <typename CharType>
931 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
932 if (s == nullptr) {
933 return !expect_eq_;
934 }
935 return MatchAndExplain(StringType(s), listener);
936 }
937
938 // Matches anything that can convert to StringType.
939 //
940 // This is a template, not just a plain function with const StringType&,
941 // because StringView has some interfering non-explicit constructors.
942 template <typename MatcheeStringType>
943 bool MatchAndExplain(const MatcheeStringType& s,
944 MatchResultListener* /* listener */) const {
945 const StringType s2(s);
946 const bool eq = case_sensitive_ ? s2 == string_
947 : CaseInsensitiveStringEquals(s2, string_);
948 return expect_eq_ == eq;
949 }
950
951 void DescribeTo(::std::ostream* os) const {
952 DescribeToHelper(expect_eq: expect_eq_, os);
953 }
954
955 void DescribeNegationTo(::std::ostream* os) const {
956 DescribeToHelper(expect_eq: !expect_eq_, os);
957 }
958
959 private:
960 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
961 *os << (expect_eq ? "is " : "isn't ");
962 *os << "equal to ";
963 if (!case_sensitive_) {
964 *os << "(ignoring case) ";
965 }
966 UniversalPrint(string_, os);
967 }
968
969 const StringType string_;
970 const bool expect_eq_;
971 const bool case_sensitive_;
972};
973
974// Implements the polymorphic HasSubstr(substring) matcher, which
975// can be used as a Matcher<T> as long as T can be converted to a
976// string.
977template <typename StringType>
978class HasSubstrMatcher {
979 public:
980 explicit HasSubstrMatcher(const StringType& substring)
981 : substring_(substring) {}
982
983#if GTEST_INTERNAL_HAS_STRING_VIEW
984 bool MatchAndExplain(const internal::StringView& s,
985 MatchResultListener* listener) const {
986 // This should fail to compile if StringView is used with wide
987 // strings.
988 const StringType& str = std::string(s);
989 return MatchAndExplain(str, listener);
990 }
991#endif // GTEST_INTERNAL_HAS_STRING_VIEW
992
993 // Accepts pointer types, particularly:
994 // const char*
995 // char*
996 // const wchar_t*
997 // wchar_t*
998 template <typename CharType>
999 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1000 return s != nullptr && MatchAndExplain(StringType(s), listener);
1001 }
1002
1003 // Matches anything that can convert to StringType.
1004 //
1005 // This is a template, not just a plain function with const StringType&,
1006 // because StringView has some interfering non-explicit constructors.
1007 template <typename MatcheeStringType>
1008 bool MatchAndExplain(const MatcheeStringType& s,
1009 MatchResultListener* /* listener */) const {
1010 return StringType(s).find(substring_) != StringType::npos;
1011 }
1012
1013 // Describes what this matcher matches.
1014 void DescribeTo(::std::ostream* os) const {
1015 *os << "has substring ";
1016 UniversalPrint(substring_, os);
1017 }
1018
1019 void DescribeNegationTo(::std::ostream* os) const {
1020 *os << "has no substring ";
1021 UniversalPrint(substring_, os);
1022 }
1023
1024 private:
1025 const StringType substring_;
1026};
1027
1028// Implements the polymorphic StartsWith(substring) matcher, which
1029// can be used as a Matcher<T> as long as T can be converted to a
1030// string.
1031template <typename StringType>
1032class StartsWithMatcher {
1033 public:
1034 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {}
1035
1036#if GTEST_INTERNAL_HAS_STRING_VIEW
1037 bool MatchAndExplain(const internal::StringView& s,
1038 MatchResultListener* listener) const {
1039 // This should fail to compile if StringView is used with wide
1040 // strings.
1041 const StringType& str = std::string(s);
1042 return MatchAndExplain(str, listener);
1043 }
1044#endif // GTEST_INTERNAL_HAS_STRING_VIEW
1045
1046 // Accepts pointer types, particularly:
1047 // const char*
1048 // char*
1049 // const wchar_t*
1050 // wchar_t*
1051 template <typename CharType>
1052 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1053 return s != nullptr && MatchAndExplain(StringType(s), listener);
1054 }
1055
1056 // Matches anything that can convert to StringType.
1057 //
1058 // This is a template, not just a plain function with const StringType&,
1059 // because StringView has some interfering non-explicit constructors.
1060 template <typename MatcheeStringType>
1061 bool MatchAndExplain(const MatcheeStringType& s,
1062 MatchResultListener* /* listener */) const {
1063 const StringType s2(s);
1064 return s2.length() >= prefix_.length() &&
1065 s2.substr(0, prefix_.length()) == prefix_;
1066 }
1067
1068 void DescribeTo(::std::ostream* os) const {
1069 *os << "starts with ";
1070 UniversalPrint(prefix_, os);
1071 }
1072
1073 void DescribeNegationTo(::std::ostream* os) const {
1074 *os << "doesn't start with ";
1075 UniversalPrint(prefix_, os);
1076 }
1077
1078 private:
1079 const StringType prefix_;
1080};
1081
1082// Implements the polymorphic EndsWith(substring) matcher, which
1083// can be used as a Matcher<T> as long as T can be converted to a
1084// string.
1085template <typename StringType>
1086class EndsWithMatcher {
1087 public:
1088 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1089
1090#if GTEST_INTERNAL_HAS_STRING_VIEW
1091 bool MatchAndExplain(const internal::StringView& s,
1092 MatchResultListener* listener) const {
1093 // This should fail to compile if StringView is used with wide
1094 // strings.
1095 const StringType& str = std::string(s);
1096 return MatchAndExplain(str, listener);
1097 }
1098#endif // GTEST_INTERNAL_HAS_STRING_VIEW
1099
1100 // Accepts pointer types, particularly:
1101 // const char*
1102 // char*
1103 // const wchar_t*
1104 // wchar_t*
1105 template <typename CharType>
1106 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1107 return s != nullptr && MatchAndExplain(StringType(s), listener);
1108 }
1109
1110 // Matches anything that can convert to StringType.
1111 //
1112 // This is a template, not just a plain function with const StringType&,
1113 // because StringView has some interfering non-explicit constructors.
1114 template <typename MatcheeStringType>
1115 bool MatchAndExplain(const MatcheeStringType& s,
1116 MatchResultListener* /* listener */) const {
1117 const StringType s2(s);
1118 return s2.length() >= suffix_.length() &&
1119 s2.substr(s2.length() - suffix_.length()) == suffix_;
1120 }
1121
1122 void DescribeTo(::std::ostream* os) const {
1123 *os << "ends with ";
1124 UniversalPrint(suffix_, os);
1125 }
1126
1127 void DescribeNegationTo(::std::ostream* os) const {
1128 *os << "doesn't end with ";
1129 UniversalPrint(suffix_, os);
1130 }
1131
1132 private:
1133 const StringType suffix_;
1134};
1135
1136// Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be
1137// used as a Matcher<T> as long as T can be converted to a string.
1138class WhenBase64UnescapedMatcher {
1139 public:
1140 using is_gtest_matcher = void;
1141
1142 explicit WhenBase64UnescapedMatcher(
1143 const Matcher<const std::string&>& internal_matcher)
1144 : internal_matcher_(internal_matcher) {}
1145
1146 // Matches anything that can convert to std::string.
1147 template <typename MatcheeStringType>
1148 bool MatchAndExplain(const MatcheeStringType& s,
1149 MatchResultListener* listener) const {
1150 const std::string s2(s); // NOLINT (needed for working with string_view).
1151 std::string unescaped;
1152 if (!internal::Base64Unescape(encoded: s2, decoded: &unescaped)) {
1153 if (listener != nullptr) {
1154 *listener << "is not a valid base64 escaped string";
1155 }
1156 return false;
1157 }
1158 return MatchPrintAndExplain(value&: unescaped, matcher: internal_matcher_, listener);
1159 }
1160
1161 void DescribeTo(::std::ostream* os) const {
1162 *os << "matches after Base64Unescape ";
1163 internal_matcher_.DescribeTo(os);
1164 }
1165
1166 void DescribeNegationTo(::std::ostream* os) const {
1167 *os << "does not match after Base64Unescape ";
1168 internal_matcher_.DescribeTo(os);
1169 }
1170
1171 private:
1172 const Matcher<const std::string&> internal_matcher_;
1173};
1174
1175// Implements a matcher that compares the two fields of a 2-tuple
1176// using one of the ==, <=, <, etc, operators. The two fields being
1177// compared don't have to have the same type.
1178//
1179// The matcher defined here is polymorphic (for example, Eq() can be
1180// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1181// etc). Therefore we use a template type conversion operator in the
1182// implementation.
1183template <typename D, typename Op>
1184class PairMatchBase {
1185 public:
1186 template <typename T1, typename T2>
1187 operator Matcher<::std::tuple<T1, T2>>() const {
1188 return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1189 }
1190 template <typename T1, typename T2>
1191 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1192 return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1193 }
1194
1195 private:
1196 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1197 return os << D::Desc();
1198 }
1199
1200 template <typename Tuple>
1201 class Impl : public MatcherInterface<Tuple> {
1202 public:
1203 bool MatchAndExplain(Tuple args,
1204 MatchResultListener* /* listener */) const override {
1205 return Op()(::std::get<0>(args), ::std::get<1>(args));
1206 }
1207 void DescribeTo(::std::ostream* os) const override {
1208 *os << "are " << GetDesc;
1209 }
1210 void DescribeNegationTo(::std::ostream* os) const override {
1211 *os << "aren't " << GetDesc;
1212 }
1213 };
1214};
1215
1216class Eq2Matcher : public PairMatchBase<Eq2Matcher, std::equal_to<>> {
1217 public:
1218 static const char* Desc() { return "an equal pair"; }
1219};
1220class Ne2Matcher : public PairMatchBase<Ne2Matcher, std::not_equal_to<>> {
1221 public:
1222 static const char* Desc() { return "an unequal pair"; }
1223};
1224class Lt2Matcher : public PairMatchBase<Lt2Matcher, std::less<>> {
1225 public:
1226 static const char* Desc() { return "a pair where the first < the second"; }
1227};
1228class Gt2Matcher : public PairMatchBase<Gt2Matcher, std::greater<>> {
1229 public:
1230 static const char* Desc() { return "a pair where the first > the second"; }
1231};
1232class Le2Matcher : public PairMatchBase<Le2Matcher, std::less_equal<>> {
1233 public:
1234 static const char* Desc() { return "a pair where the first <= the second"; }
1235};
1236class Ge2Matcher : public PairMatchBase<Ge2Matcher, std::greater_equal<>> {
1237 public:
1238 static const char* Desc() { return "a pair where the first >= the second"; }
1239};
1240
1241// Implements the Not(...) matcher for a particular argument type T.
1242// We do not nest it inside the NotMatcher class template, as that
1243// will prevent different instantiations of NotMatcher from sharing
1244// the same NotMatcherImpl<T> class.
1245template <typename T>
1246class NotMatcherImpl : public MatcherInterface<const T&> {
1247 public:
1248 explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
1249
1250 bool MatchAndExplain(const T& x,
1251 MatchResultListener* listener) const override {
1252 return !matcher_.MatchAndExplain(x, listener);
1253 }
1254
1255 void DescribeTo(::std::ostream* os) const override {
1256 matcher_.DescribeNegationTo(os);
1257 }
1258
1259 void DescribeNegationTo(::std::ostream* os) const override {
1260 matcher_.DescribeTo(os);
1261 }
1262
1263 private:
1264 const Matcher<T> matcher_;
1265};
1266
1267// Implements the Not(m) matcher, which matches a value that doesn't
1268// match matcher m.
1269template <typename InnerMatcher>
1270class NotMatcher {
1271 public:
1272 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1273
1274 // This template type conversion operator allows Not(m) to be used
1275 // to match any type m can match.
1276 template <typename T>
1277 operator Matcher<T>() const {
1278 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1279 }
1280
1281 private:
1282 InnerMatcher matcher_;
1283};
1284
1285// Implements the AllOf(m1, m2) matcher for a particular argument type
1286// T. We do not nest it inside the BothOfMatcher class template, as
1287// that will prevent different instantiations of BothOfMatcher from
1288// sharing the same BothOfMatcherImpl<T> class.
1289template <typename T>
1290class AllOfMatcherImpl : public MatcherInterface<const T&> {
1291 public:
1292 explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers)
1293 : matchers_(std::move(matchers)) {}
1294
1295 void DescribeTo(::std::ostream* os) const override {
1296 *os << "(";
1297 for (size_t i = 0; i < matchers_.size(); ++i) {
1298 if (i != 0) *os << ") and (";
1299 matchers_[i].DescribeTo(os);
1300 }
1301 *os << ")";
1302 }
1303
1304 void DescribeNegationTo(::std::ostream* os) const override {
1305 *os << "(";
1306 for (size_t i = 0; i < matchers_.size(); ++i) {
1307 if (i != 0) *os << ") or (";
1308 matchers_[i].DescribeNegationTo(os);
1309 }
1310 *os << ")";
1311 }
1312
1313 bool MatchAndExplain(const T& x,
1314 MatchResultListener* listener) const override {
1315 if (!listener->IsInterested()) {
1316 // Fast path to avoid unnecessary formatting.
1317 for (const Matcher<T>& matcher : matchers_) {
1318 if (!matcher.Matches(x)) {
1319 return false;
1320 }
1321 }
1322 return true;
1323 }
1324 // This method uses matcher's explanation when explaining the result.
1325 // However, if matcher doesn't provide one, this method uses matcher's
1326 // description.
1327 std::string all_match_result;
1328 for (const Matcher<T>& matcher : matchers_) {
1329 StringMatchResultListener slistener;
1330 // Return explanation for first failed matcher.
1331 if (!matcher.MatchAndExplain(x, &slistener)) {
1332 const std::string explanation = slistener.str();
1333 if (!explanation.empty()) {
1334 *listener << explanation;
1335 } else {
1336 *listener << "which doesn't match (" << Describe(matcher) << ")";
1337 }
1338 return false;
1339 }
1340 // Keep track of explanations in case all matchers succeed.
1341 std::string explanation = slistener.str();
1342 if (explanation.empty()) {
1343 explanation = Describe(matcher);
1344 }
1345 if (all_match_result.empty()) {
1346 all_match_result = explanation;
1347 } else {
1348 if (!explanation.empty()) {
1349 all_match_result += ", and ";
1350 all_match_result += explanation;
1351 }
1352 }
1353 }
1354
1355 *listener << all_match_result;
1356 return true;
1357 }
1358
1359 private:
1360 // Returns matcher description as a string.
1361 std::string Describe(const Matcher<T>& matcher) const {
1362 StringMatchResultListener listener;
1363 matcher.DescribeTo(listener.stream());
1364 return listener.str();
1365 }
1366 const std::vector<Matcher<T>> matchers_;
1367};
1368
1369// VariadicMatcher is used for the variadic implementation of
1370// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1371// CombiningMatcher<T> is used to recursively combine the provided matchers
1372// (of type Args...).
1373template <template <typename T> class CombiningMatcher, typename... Args>
1374class VariadicMatcher {
1375 public:
1376 VariadicMatcher(const Args&... matchers) // NOLINT
1377 : matchers_(matchers...) {
1378 static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1379 }
1380
1381 VariadicMatcher(const VariadicMatcher&) = default;
1382 VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1383
1384 // This template type conversion operator allows an
1385 // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1386 // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1387 template <typename T>
1388 operator Matcher<T>() const {
1389 std::vector<Matcher<T>> values;
1390 CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1391 return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1392 }
1393
1394 private:
1395 template <typename T, size_t I>
1396 void CreateVariadicMatcher(std::vector<Matcher<T>>* values,
1397 std::integral_constant<size_t, I>) const {
1398 values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1399 CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1400 }
1401
1402 template <typename T>
1403 void CreateVariadicMatcher(
1404 std::vector<Matcher<T>>*,
1405 std::integral_constant<size_t, sizeof...(Args)>) const {}
1406
1407 std::tuple<Args...> matchers_;
1408};
1409
1410template <typename... Args>
1411using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1412
1413// Implements the AnyOf(m1, m2) matcher for a particular argument type
1414// T. We do not nest it inside the AnyOfMatcher class template, as
1415// that will prevent different instantiations of AnyOfMatcher from
1416// sharing the same EitherOfMatcherImpl<T> class.
1417template <typename T>
1418class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1419 public:
1420 explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers)
1421 : matchers_(std::move(matchers)) {}
1422
1423 void DescribeTo(::std::ostream* os) const override {
1424 *os << "(";
1425 for (size_t i = 0; i < matchers_.size(); ++i) {
1426 if (i != 0) *os << ") or (";
1427 matchers_[i].DescribeTo(os);
1428 }
1429 *os << ")";
1430 }
1431
1432 void DescribeNegationTo(::std::ostream* os) const override {
1433 *os << "(";
1434 for (size_t i = 0; i < matchers_.size(); ++i) {
1435 if (i != 0) *os << ") and (";
1436 matchers_[i].DescribeNegationTo(os);
1437 }
1438 *os << ")";
1439 }
1440
1441 bool MatchAndExplain(const T& x,
1442 MatchResultListener* listener) const override {
1443 if (!listener->IsInterested()) {
1444 // Fast path to avoid unnecessary formatting of match explanations.
1445 for (const Matcher<T>& matcher : matchers_) {
1446 if (matcher.Matches(x)) {
1447 return true;
1448 }
1449 }
1450 return false;
1451 }
1452 // This method uses matcher's explanation when explaining the result.
1453 // However, if matcher doesn't provide one, this method uses matcher's
1454 // description.
1455 std::string no_match_result;
1456 for (const Matcher<T>& matcher : matchers_) {
1457 StringMatchResultListener slistener;
1458 // Return explanation for first match.
1459 if (matcher.MatchAndExplain(x, &slistener)) {
1460 const std::string explanation = slistener.str();
1461 if (!explanation.empty()) {
1462 *listener << explanation;
1463 } else {
1464 *listener << "which matches (" << Describe(matcher) << ")";
1465 }
1466 return true;
1467 }
1468 // Keep track of explanations in case there is no match.
1469 std::string explanation = slistener.str();
1470 if (explanation.empty()) {
1471 explanation = DescribeNegation(matcher);
1472 }
1473 if (no_match_result.empty()) {
1474 no_match_result = explanation;
1475 } else {
1476 if (!explanation.empty()) {
1477 no_match_result += ", and ";
1478 no_match_result += explanation;
1479 }
1480 }
1481 }
1482
1483 *listener << no_match_result;
1484 return false;
1485 }
1486
1487 private:
1488 // Returns matcher description as a string.
1489 std::string Describe(const Matcher<T>& matcher) const {
1490 StringMatchResultListener listener;
1491 matcher.DescribeTo(listener.stream());
1492 return listener.str();
1493 }
1494
1495 std::string DescribeNegation(const Matcher<T>& matcher) const {
1496 StringMatchResultListener listener;
1497 matcher.DescribeNegationTo(listener.stream());
1498 return listener.str();
1499 }
1500
1501 const std::vector<Matcher<T>> matchers_;
1502};
1503
1504// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1505template <typename... Args>
1506using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1507
1508// ConditionalMatcher is the implementation of Conditional(cond, m1, m2)
1509template <typename MatcherTrue, typename MatcherFalse>
1510class ConditionalMatcher {
1511 public:
1512 ConditionalMatcher(bool condition, MatcherTrue matcher_true,
1513 MatcherFalse matcher_false)
1514 : condition_(condition),
1515 matcher_true_(std::move(matcher_true)),
1516 matcher_false_(std::move(matcher_false)) {}
1517
1518 template <typename T>
1519 operator Matcher<T>() const { // NOLINT(runtime/explicit)
1520 return condition_ ? SafeMatcherCast<T>(matcher_true_)
1521 : SafeMatcherCast<T>(matcher_false_);
1522 }
1523
1524 private:
1525 bool condition_;
1526 MatcherTrue matcher_true_;
1527 MatcherFalse matcher_false_;
1528};
1529
1530// Wrapper for implementation of Any/AllOfArray().
1531template <template <class> class MatcherImpl, typename T>
1532class SomeOfArrayMatcher {
1533 public:
1534 // Constructs the matcher from a sequence of element values or
1535 // element matchers.
1536 template <typename Iter>
1537 SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1538
1539 template <typename U>
1540 operator Matcher<U>() const { // NOLINT
1541 using RawU = typename std::decay<U>::type;
1542 std::vector<Matcher<RawU>> matchers;
1543 matchers.reserve(matchers_.size());
1544 for (const auto& matcher : matchers_) {
1545 matchers.push_back(MatcherCast<RawU>(matcher));
1546 }
1547 return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1548 }
1549
1550 private:
1551 const std::vector<std::remove_const_t<T>> matchers_;
1552};
1553
1554template <typename T>
1555using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1556
1557template <typename T>
1558using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1559
1560// Used for implementing Truly(pred), which turns a predicate into a
1561// matcher.
1562template <typename Predicate>
1563class TrulyMatcher {
1564 public:
1565 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1566
1567 // This method template allows Truly(pred) to be used as a matcher
1568 // for type T where T is the argument type of predicate 'pred'. The
1569 // argument is passed by reference as the predicate may be
1570 // interested in the address of the argument.
1571 template <typename T>
1572 bool MatchAndExplain(T& x, // NOLINT
1573 MatchResultListener* listener) const {
1574 // Without the if-statement, MSVC sometimes warns about converting
1575 // a value to bool (warning 4800).
1576 //
1577 // We cannot write 'return !!predicate_(x);' as that doesn't work
1578 // when predicate_(x) returns a class convertible to bool but
1579 // having no operator!().
1580 if (predicate_(x)) return true;
1581 *listener << "didn't satisfy the given predicate";
1582 return false;
1583 }
1584
1585 void DescribeTo(::std::ostream* os) const {
1586 *os << "satisfies the given predicate";
1587 }
1588
1589 void DescribeNegationTo(::std::ostream* os) const {
1590 *os << "doesn't satisfy the given predicate";
1591 }
1592
1593 private:
1594 Predicate predicate_;
1595};
1596
1597// Used for implementing Matches(matcher), which turns a matcher into
1598// a predicate.
1599template <typename M>
1600class MatcherAsPredicate {
1601 public:
1602 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1603
1604 // This template operator() allows Matches(m) to be used as a
1605 // predicate on type T where m is a matcher on type T.
1606 //
1607 // The argument x is passed by reference instead of by value, as
1608 // some matcher may be interested in its address (e.g. as in
1609 // Matches(Ref(n))(x)).
1610 template <typename T>
1611 bool operator()(const T& x) const {
1612 // We let matcher_ commit to a particular type here instead of
1613 // when the MatcherAsPredicate object was constructed. This
1614 // allows us to write Matches(m) where m is a polymorphic matcher
1615 // (e.g. Eq(5)).
1616 //
1617 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1618 // compile when matcher_ has type Matcher<const T&>; if we write
1619 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1620 // when matcher_ has type Matcher<T>; if we just write
1621 // matcher_.Matches(x), it won't compile when matcher_ is
1622 // polymorphic, e.g. Eq(5).
1623 //
1624 // MatcherCast<const T&>() is necessary for making the code work
1625 // in all of the above situations.
1626 return MatcherCast<const T&>(matcher_).Matches(x);
1627 }
1628
1629 private:
1630 M matcher_;
1631};
1632
1633// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1634// argument M must be a type that can be converted to a matcher.
1635template <typename M>
1636class PredicateFormatterFromMatcher {
1637 public:
1638 explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1639
1640 // This template () operator allows a PredicateFormatterFromMatcher
1641 // object to act as a predicate-formatter suitable for using with
1642 // Google Test's EXPECT_PRED_FORMAT1() macro.
1643 template <typename T>
1644 AssertionResult operator()(const char* value_text, const T& x) const {
1645 // We convert matcher_ to a Matcher<const T&> *now* instead of
1646 // when the PredicateFormatterFromMatcher object was constructed,
1647 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1648 // know which type to instantiate it to until we actually see the
1649 // type of x here.
1650 //
1651 // We write SafeMatcherCast<const T&>(matcher_) instead of
1652 // Matcher<const T&>(matcher_), as the latter won't compile when
1653 // matcher_ has type Matcher<T> (e.g. An<int>()).
1654 // We don't write MatcherCast<const T&> either, as that allows
1655 // potentially unsafe downcasting of the matcher argument.
1656 const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1657
1658 // The expected path here is that the matcher should match (i.e. that most
1659 // tests pass) so optimize for this case.
1660 if (matcher.Matches(x)) {
1661 return AssertionSuccess();
1662 }
1663
1664 ::std::stringstream ss;
1665 ss << "Value of: " << value_text << "\n"
1666 << "Expected: ";
1667 matcher.DescribeTo(&ss);
1668
1669 // Rerun the matcher to "PrintAndExplain" the failure.
1670 StringMatchResultListener listener;
1671 if (MatchPrintAndExplain(x, matcher, &listener)) {
1672 ss << "\n The matcher failed on the initial attempt; but passed when "
1673 "rerun to generate the explanation.";
1674 }
1675 ss << "\n Actual: " << listener.str();
1676 return AssertionFailure() << ss.str();
1677 }
1678
1679 private:
1680 const M matcher_;
1681};
1682
1683// A helper function for converting a matcher to a predicate-formatter
1684// without the user needing to explicitly write the type. This is
1685// used for implementing ASSERT_THAT() and EXPECT_THAT().
1686// Implementation detail: 'matcher' is received by-value to force decaying.
1687template <typename M>
1688inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(
1689 M matcher) {
1690 return PredicateFormatterFromMatcher<M>(std::move(matcher));
1691}
1692
1693// Implements the polymorphic IsNan() matcher, which matches any floating type
1694// value that is Nan.
1695class IsNanMatcher {
1696 public:
1697 template <typename FloatType>
1698 bool MatchAndExplain(const FloatType& f,
1699 MatchResultListener* /* listener */) const {
1700 return (::std::isnan)(f);
1701 }
1702
1703 void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1704 void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; }
1705};
1706
1707// Implements the polymorphic floating point equality matcher, which matches
1708// two float values using ULP-based approximation or, optionally, a
1709// user-specified epsilon. The template is meant to be instantiated with
1710// FloatType being either float or double.
1711template <typename FloatType>
1712class FloatingEqMatcher {
1713 public:
1714 // Constructor for FloatingEqMatcher.
1715 // The matcher's input will be compared with expected. The matcher treats two
1716 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1717 // equality comparisons between NANs will always return false. We specify a
1718 // negative max_abs_error_ term to indicate that ULP-based approximation will
1719 // be used for comparison.
1720 FloatingEqMatcher(FloatType expected, bool nan_eq_nan)
1721 : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {}
1722
1723 // Constructor that supports a user-specified max_abs_error that will be used
1724 // for comparison instead of ULP-based approximation. The max absolute
1725 // should be non-negative.
1726 FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1727 FloatType max_abs_error)
1728 : expected_(expected),
1729 nan_eq_nan_(nan_eq_nan),
1730 max_abs_error_(max_abs_error) {
1731 GTEST_CHECK_(max_abs_error >= 0)
1732 << ", where max_abs_error is" << max_abs_error;
1733 }
1734
1735 // Implements floating point equality matcher as a Matcher<T>.
1736 template <typename T>
1737 class Impl : public MatcherInterface<T> {
1738 public:
1739 Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1740 : expected_(expected),
1741 nan_eq_nan_(nan_eq_nan),
1742 max_abs_error_(max_abs_error) {}
1743
1744 bool MatchAndExplain(T value,
1745 MatchResultListener* listener) const override {
1746 const FloatingPoint<FloatType> actual(value), expected(expected_);
1747
1748 // Compares NaNs first, if nan_eq_nan_ is true.
1749 if (actual.is_nan() || expected.is_nan()) {
1750 if (actual.is_nan() && expected.is_nan()) {
1751 return nan_eq_nan_;
1752 }
1753 // One is nan; the other is not nan.
1754 return false;
1755 }
1756 if (HasMaxAbsError()) {
1757 // We perform an equality check so that inf will match inf, regardless
1758 // of error bounds. If the result of value - expected_ would result in
1759 // overflow or if either value is inf, the default result is infinity,
1760 // which should only match if max_abs_error_ is also infinity.
1761 if (value == expected_) {
1762 return true;
1763 }
1764
1765 const FloatType diff = value - expected_;
1766 if (::std::fabs(diff) <= max_abs_error_) {
1767 return true;
1768 }
1769
1770 if (listener->IsInterested()) {
1771 *listener << "which is " << diff << " from " << expected_;
1772 }
1773 return false;
1774 } else {
1775 return actual.AlmostEquals(expected);
1776 }
1777 }
1778
1779 void DescribeTo(::std::ostream* os) const override {
1780 // os->precision() returns the previously set precision, which we
1781 // store to restore the ostream to its original configuration
1782 // after outputting.
1783 const ::std::streamsize old_precision =
1784 os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1785 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1786 if (nan_eq_nan_) {
1787 *os << "is NaN";
1788 } else {
1789 *os << "never matches";
1790 }
1791 } else {
1792 *os << "is approximately " << expected_;
1793 if (HasMaxAbsError()) {
1794 *os << " (absolute error <= " << max_abs_error_ << ")";
1795 }
1796 }
1797 os->precision(prec: old_precision);
1798 }
1799
1800 void DescribeNegationTo(::std::ostream* os) const override {
1801 // As before, get original precision.
1802 const ::std::streamsize old_precision =
1803 os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1804 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1805 if (nan_eq_nan_) {
1806 *os << "isn't NaN";
1807 } else {
1808 *os << "is anything";
1809 }
1810 } else {
1811 *os << "isn't approximately " << expected_;
1812 if (HasMaxAbsError()) {
1813 *os << " (absolute error > " << max_abs_error_ << ")";
1814 }
1815 }
1816 // Restore original precision.
1817 os->precision(prec: old_precision);
1818 }
1819
1820 private:
1821 bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
1822
1823 const FloatType expected_;
1824 const bool nan_eq_nan_;
1825 // max_abs_error will be used for value comparison when >= 0.
1826 const FloatType max_abs_error_;
1827 };
1828
1829 // The following 3 type conversion operators allow FloatEq(expected) and
1830 // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1831 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1832 operator Matcher<FloatType>() const {
1833 return MakeMatcher(
1834 new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1835 }
1836
1837 operator Matcher<const FloatType&>() const {
1838 return MakeMatcher(
1839 new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1840 }
1841
1842 operator Matcher<FloatType&>() const {
1843 return MakeMatcher(
1844 new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1845 }
1846
1847 private:
1848 const FloatType expected_;
1849 const bool nan_eq_nan_;
1850 // max_abs_error will be used for value comparison when >= 0.
1851 const FloatType max_abs_error_;
1852};
1853
1854// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1855// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1856// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1857// against y. The former implements "Eq", the latter "Near". At present, there
1858// is no version that compares NaNs as equal.
1859template <typename FloatType>
1860class FloatingEq2Matcher {
1861 public:
1862 FloatingEq2Matcher() { Init(max_abs_error_val: -1, nan_eq_nan_val: false); }
1863
1864 explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(max_abs_error_val: -1, nan_eq_nan_val: nan_eq_nan); }
1865
1866 explicit FloatingEq2Matcher(FloatType max_abs_error) {
1867 Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: false);
1868 }
1869
1870 FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1871 Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: nan_eq_nan);
1872 }
1873
1874 template <typename T1, typename T2>
1875 operator Matcher<::std::tuple<T1, T2>>() const {
1876 return MakeMatcher(
1877 new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1878 }
1879 template <typename T1, typename T2>
1880 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1881 return MakeMatcher(
1882 new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1883 }
1884
1885 private:
1886 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1887 return os << "an almost-equal pair";
1888 }
1889
1890 template <typename Tuple>
1891 class Impl : public MatcherInterface<Tuple> {
1892 public:
1893 Impl(FloatType max_abs_error, bool nan_eq_nan)
1894 : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
1895
1896 bool MatchAndExplain(Tuple args,
1897 MatchResultListener* listener) const override {
1898 if (max_abs_error_ == -1) {
1899 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1900 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1901 ::std::get<1>(args), listener);
1902 } else {
1903 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1904 max_abs_error_);
1905 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1906 ::std::get<1>(args), listener);
1907 }
1908 }
1909 void DescribeTo(::std::ostream* os) const override {
1910 *os << "are " << GetDesc;
1911 }
1912 void DescribeNegationTo(::std::ostream* os) const override {
1913 *os << "aren't " << GetDesc;
1914 }
1915
1916 private:
1917 FloatType max_abs_error_;
1918 const bool nan_eq_nan_;
1919 };
1920
1921 void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1922 max_abs_error_ = max_abs_error_val;
1923 nan_eq_nan_ = nan_eq_nan_val;
1924 }
1925 FloatType max_abs_error_;
1926 bool nan_eq_nan_;
1927};
1928
1929// Implements the Pointee(m) matcher for matching a pointer whose
1930// pointee matches matcher m. The pointer can be either raw or smart.
1931template <typename InnerMatcher>
1932class PointeeMatcher {
1933 public:
1934 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1935
1936 // This type conversion operator template allows Pointee(m) to be
1937 // used as a matcher for any pointer type whose pointee type is
1938 // compatible with the inner matcher, where type Pointer can be
1939 // either a raw pointer or a smart pointer.
1940 //
1941 // The reason we do this instead of relying on
1942 // MakePolymorphicMatcher() is that the latter is not flexible
1943 // enough for implementing the DescribeTo() method of Pointee().
1944 template <typename Pointer>
1945 operator Matcher<Pointer>() const {
1946 return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1947 }
1948
1949 private:
1950 // The monomorphic implementation that works for a particular pointer type.
1951 template <typename Pointer>
1952 class Impl : public MatcherInterface<Pointer> {
1953 public:
1954 using Pointee =
1955 typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1956 Pointer)>::element_type;
1957
1958 explicit Impl(const InnerMatcher& matcher)
1959 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1960
1961 void DescribeTo(::std::ostream* os) const override {
1962 *os << "points to a value that ";
1963 matcher_.DescribeTo(os);
1964 }
1965
1966 void DescribeNegationTo(::std::ostream* os) const override {
1967 *os << "does not point to a value that ";
1968 matcher_.DescribeTo(os);
1969 }
1970
1971 bool MatchAndExplain(Pointer pointer,
1972 MatchResultListener* listener) const override {
1973 if (GetRawPointer(pointer) == nullptr) return false;
1974
1975 *listener << "which points to ";
1976 return MatchPrintAndExplain(*pointer, matcher_, listener);
1977 }
1978
1979 private:
1980 const Matcher<const Pointee&> matcher_;
1981 };
1982
1983 const InnerMatcher matcher_;
1984};
1985
1986// Implements the Pointer(m) matcher
1987// Implements the Pointer(m) matcher for matching a pointer that matches matcher
1988// m. The pointer can be either raw or smart, and will match `m` against the
1989// raw pointer.
1990template <typename InnerMatcher>
1991class PointerMatcher {
1992 public:
1993 explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1994
1995 // This type conversion operator template allows Pointer(m) to be
1996 // used as a matcher for any pointer type whose pointer type is
1997 // compatible with the inner matcher, where type PointerType can be
1998 // either a raw pointer or a smart pointer.
1999 //
2000 // The reason we do this instead of relying on
2001 // MakePolymorphicMatcher() is that the latter is not flexible
2002 // enough for implementing the DescribeTo() method of Pointer().
2003 template <typename PointerType>
2004 operator Matcher<PointerType>() const { // NOLINT
2005 return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
2006 }
2007
2008 private:
2009 // The monomorphic implementation that works for a particular pointer type.
2010 template <typename PointerType>
2011 class Impl : public MatcherInterface<PointerType> {
2012 public:
2013 using Pointer =
2014 const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
2015 PointerType)>::element_type*;
2016
2017 explicit Impl(const InnerMatcher& matcher)
2018 : matcher_(MatcherCast<Pointer>(matcher)) {}
2019
2020 void DescribeTo(::std::ostream* os) const override {
2021 *os << "is a pointer that ";
2022 matcher_.DescribeTo(os);
2023 }
2024
2025 void DescribeNegationTo(::std::ostream* os) const override {
2026 *os << "is not a pointer that ";
2027 matcher_.DescribeTo(os);
2028 }
2029
2030 bool MatchAndExplain(PointerType pointer,
2031 MatchResultListener* listener) const override {
2032 *listener << "which is a pointer that ";
2033 Pointer p = GetRawPointer(pointer);
2034 return MatchPrintAndExplain(p, matcher_, listener);
2035 }
2036
2037 private:
2038 Matcher<Pointer> matcher_;
2039 };
2040
2041 const InnerMatcher matcher_;
2042};
2043
2044#if GTEST_HAS_RTTI
2045// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
2046// reference that matches inner_matcher when dynamic_cast<T> is applied.
2047// The result of dynamic_cast<To> is forwarded to the inner matcher.
2048// If To is a pointer and the cast fails, the inner matcher will receive NULL.
2049// If To is a reference and the cast fails, this matcher returns false
2050// immediately.
2051template <typename To>
2052class WhenDynamicCastToMatcherBase {
2053 public:
2054 explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
2055 : matcher_(matcher) {}
2056
2057 void DescribeTo(::std::ostream* os) const {
2058 GetCastTypeDescription(os);
2059 matcher_.DescribeTo(os);
2060 }
2061
2062 void DescribeNegationTo(::std::ostream* os) const {
2063 GetCastTypeDescription(os);
2064 matcher_.DescribeNegationTo(os);
2065 }
2066
2067 protected:
2068 const Matcher<To> matcher_;
2069
2070 static std::string GetToName() { return GetTypeName<To>(); }
2071
2072 private:
2073 static void GetCastTypeDescription(::std::ostream* os) {
2074 *os << "when dynamic_cast to " << GetToName() << ", ";
2075 }
2076};
2077
2078// Primary template.
2079// To is a pointer. Cast and forward the result.
2080template <typename To>
2081class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2082 public:
2083 explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2084 : WhenDynamicCastToMatcherBase<To>(matcher) {}
2085
2086 template <typename From>
2087 bool MatchAndExplain(From from, MatchResultListener* listener) const {
2088 To to = dynamic_cast<To>(from);
2089 return MatchPrintAndExplain(to, this->matcher_, listener);
2090 }
2091};
2092
2093// Specialize for references.
2094// In this case we return false if the dynamic_cast fails.
2095template <typename To>
2096class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2097 public:
2098 explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2099 : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2100
2101 template <typename From>
2102 bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2103 // We don't want an std::bad_cast here, so do the cast with pointers.
2104 To* to = dynamic_cast<To*>(&from);
2105 if (to == nullptr) {
2106 *listener << "which cannot be dynamic_cast to " << this->GetToName();
2107 return false;
2108 }
2109 return MatchPrintAndExplain(*to, this->matcher_, listener);
2110 }
2111};
2112#endif // GTEST_HAS_RTTI
2113
2114// Implements the Field() matcher for matching a field (i.e. member
2115// variable) of an object.
2116template <typename Class, typename FieldType>
2117class FieldMatcher {
2118 public:
2119 FieldMatcher(FieldType Class::* field,
2120 const Matcher<const FieldType&>& matcher)
2121 : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2122
2123 FieldMatcher(const std::string& field_name, FieldType Class::* field,
2124 const Matcher<const FieldType&>& matcher)
2125 : field_(field),
2126 matcher_(matcher),
2127 whose_field_("whose field `" + field_name + "` ") {}
2128
2129 void DescribeTo(::std::ostream* os) const {
2130 *os << "is an object " << whose_field_;
2131 matcher_.DescribeTo(os);
2132 }
2133
2134 void DescribeNegationTo(::std::ostream* os) const {
2135 *os << "is an object " << whose_field_;
2136 matcher_.DescribeNegationTo(os);
2137 }
2138
2139 template <typename T>
2140 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2141 // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2142 // a compiler bug, and can now be removed.
2143 return MatchAndExplainImpl(
2144 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2145 value, listener);
2146 }
2147
2148 private:
2149 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2150 const Class& obj,
2151 MatchResultListener* listener) const {
2152 *listener << whose_field_ << "is ";
2153 return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2154 }
2155
2156 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2157 MatchResultListener* listener) const {
2158 if (p == nullptr) return false;
2159
2160 *listener << "which points to an object ";
2161 // Since *p has a field, it must be a class/struct/union type and
2162 // thus cannot be a pointer. Therefore we pass false_type() as
2163 // the first argument.
2164 return MatchAndExplainImpl(std::false_type(), *p, listener);
2165 }
2166
2167 const FieldType Class::* field_;
2168 const Matcher<const FieldType&> matcher_;
2169
2170 // Contains either "whose given field " if the name of the field is unknown
2171 // or "whose field `name_of_field` " if the name is known.
2172 const std::string whose_field_;
2173};
2174
2175// Implements the Property() matcher for matching a property
2176// (i.e. return value of a getter method) of an object.
2177//
2178// Property is a const-qualified member function of Class returning
2179// PropertyType.
2180template <typename Class, typename PropertyType, typename Property>
2181class PropertyMatcher {
2182 public:
2183 typedef const PropertyType& RefToConstProperty;
2184
2185 PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2186 : property_(property),
2187 matcher_(matcher),
2188 whose_property_("whose given property ") {}
2189
2190 PropertyMatcher(const std::string& property_name, Property property,
2191 const Matcher<RefToConstProperty>& matcher)
2192 : property_(property),
2193 matcher_(matcher),
2194 whose_property_("whose property `" + property_name + "` ") {}
2195
2196 void DescribeTo(::std::ostream* os) const {
2197 *os << "is an object " << whose_property_;
2198 matcher_.DescribeTo(os);
2199 }
2200
2201 void DescribeNegationTo(::std::ostream* os) const {
2202 *os << "is an object " << whose_property_;
2203 matcher_.DescribeNegationTo(os);
2204 }
2205
2206 template <typename T>
2207 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2208 return MatchAndExplainImpl(
2209 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2210 value, listener);
2211 }
2212
2213 private:
2214 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2215 const Class& obj,
2216 MatchResultListener* listener) const {
2217 *listener << whose_property_ << "is ";
2218 // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2219 // which takes a non-const reference as argument.
2220 RefToConstProperty result = (obj.*property_)();
2221 return MatchPrintAndExplain(result, matcher_, listener);
2222 }
2223
2224 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2225 MatchResultListener* listener) const {
2226 if (p == nullptr) return false;
2227
2228 *listener << "which points to an object ";
2229 // Since *p has a property method, it must be a class/struct/union
2230 // type and thus cannot be a pointer. Therefore we pass
2231 // false_type() as the first argument.
2232 return MatchAndExplainImpl(std::false_type(), *p, listener);
2233 }
2234
2235 Property property_;
2236 const Matcher<RefToConstProperty> matcher_;
2237
2238 // Contains either "whose given property " if the name of the property is
2239 // unknown or "whose property `name_of_property` " if the name is known.
2240 const std::string whose_property_;
2241};
2242
2243// Type traits specifying various features of different functors for ResultOf.
2244// The default template specifies features for functor objects.
2245template <typename Functor>
2246struct CallableTraits {
2247 typedef Functor StorageType;
2248
2249 static void CheckIsValid(Functor /* functor */) {}
2250
2251 template <typename T>
2252 static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2253 return f(arg);
2254 }
2255};
2256
2257// Specialization for function pointers.
2258template <typename ArgType, typename ResType>
2259struct CallableTraits<ResType (*)(ArgType)> {
2260 typedef ResType ResultType;
2261 typedef ResType (*StorageType)(ArgType);
2262
2263 static void CheckIsValid(ResType (*f)(ArgType)) {
2264 GTEST_CHECK_(f != nullptr)
2265 << "NULL function pointer is passed into ResultOf().";
2266 }
2267 template <typename T>
2268 static ResType Invoke(ResType (*f)(ArgType), T arg) {
2269 return (*f)(arg);
2270 }
2271};
2272
2273// Implements the ResultOf() matcher for matching a return value of a
2274// unary function of an object.
2275template <typename Callable, typename InnerMatcher>
2276class ResultOfMatcher {
2277 public:
2278 ResultOfMatcher(Callable callable, InnerMatcher matcher)
2279 : ResultOfMatcher(/*result_description=*/"", std::move(callable),
2280 std::move(matcher)) {}
2281
2282 ResultOfMatcher(const std::string& result_description, Callable callable,
2283 InnerMatcher matcher)
2284 : result_description_(result_description),
2285 callable_(std::move(callable)),
2286 matcher_(std::move(matcher)) {
2287 CallableTraits<Callable>::CheckIsValid(callable_);
2288 }
2289
2290 template <typename T>
2291 operator Matcher<T>() const {
2292 return Matcher<T>(
2293 new Impl<const T&>(result_description_, callable_, matcher_));
2294 }
2295
2296 private:
2297 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2298
2299 template <typename T>
2300 class Impl : public MatcherInterface<T> {
2301 using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2302 std::declval<CallableStorageType>(), std::declval<T>()));
2303 using InnerType = std::conditional_t<
2304 std::is_lvalue_reference<ResultType>::value,
2305 const typename std::remove_reference<ResultType>::type&, ResultType>;
2306
2307 public:
2308 template <typename M>
2309 Impl(const std::string& result_description,
2310 const CallableStorageType& callable, const M& matcher)
2311 : result_description_(result_description),
2312 callable_(callable),
2313 matcher_(MatcherCast<InnerType>(matcher)) {}
2314
2315 void DescribeTo(::std::ostream* os) const override {
2316 if (result_description_.empty()) {
2317 *os << "is mapped by the given callable to a value that ";
2318 } else {
2319 *os << "whose " << result_description_ << " ";
2320 }
2321 matcher_.DescribeTo(os);
2322 }
2323
2324 void DescribeNegationTo(::std::ostream* os) const override {
2325 if (result_description_.empty()) {
2326 *os << "is mapped by the given callable to a value that ";
2327 } else {
2328 *os << "whose " << result_description_ << " ";
2329 }
2330 matcher_.DescribeNegationTo(os);
2331 }
2332
2333 bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2334 if (result_description_.empty()) {
2335 *listener << "which is mapped by the given callable to ";
2336 } else {
2337 *listener << "whose " << result_description_ << " is ";
2338 }
2339 // Cannot pass the return value directly to MatchPrintAndExplain, which
2340 // takes a non-const reference as argument.
2341 // Also, specifying template argument explicitly is needed because T could
2342 // be a non-const reference (e.g. Matcher<Uncopyable&>).
2343 InnerType result =
2344 CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2345 return MatchPrintAndExplain(result, matcher_, listener);
2346 }
2347
2348 private:
2349 const std::string result_description_;
2350 // Functors often define operator() as non-const method even though
2351 // they are actually stateless. But we need to use them even when
2352 // 'this' is a const pointer. It's the user's responsibility not to
2353 // use stateful callables with ResultOf(), which doesn't guarantee
2354 // how many times the callable will be invoked.
2355 mutable CallableStorageType callable_;
2356 const Matcher<InnerType> matcher_;
2357 }; // class Impl
2358
2359 const std::string result_description_;
2360 const CallableStorageType callable_;
2361 const InnerMatcher matcher_;
2362};
2363
2364// Implements a matcher that checks the size of an STL-style container.
2365template <typename SizeMatcher>
2366class SizeIsMatcher {
2367 public:
2368 explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2369 : size_matcher_(size_matcher) {}
2370
2371 template <typename Container>
2372 operator Matcher<Container>() const {
2373 return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2374 }
2375
2376 template <typename Container>
2377 class Impl : public MatcherInterface<Container> {
2378 public:
2379 using SizeType = decltype(std::declval<Container>().size());
2380 explicit Impl(const SizeMatcher& size_matcher)
2381 : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2382
2383 void DescribeTo(::std::ostream* os) const override {
2384 *os << "has a size that ";
2385 size_matcher_.DescribeTo(os);
2386 }
2387 void DescribeNegationTo(::std::ostream* os) const override {
2388 *os << "has a size that ";
2389 size_matcher_.DescribeNegationTo(os);
2390 }
2391
2392 bool MatchAndExplain(Container container,
2393 MatchResultListener* listener) const override {
2394 SizeType size = container.size();
2395 StringMatchResultListener size_listener;
2396 const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2397 *listener << "whose size " << size
2398 << (result ? " matches" : " doesn't match");
2399 PrintIfNotEmpty(explanation: size_listener.str(), os: listener->stream());
2400 return result;
2401 }
2402
2403 private:
2404 const Matcher<SizeType> size_matcher_;
2405 };
2406
2407 private:
2408 const SizeMatcher size_matcher_;
2409};
2410
2411// Implements a matcher that checks the begin()..end() distance of an STL-style
2412// container.
2413template <typename DistanceMatcher>
2414class BeginEndDistanceIsMatcher {
2415 public:
2416 explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2417 : distance_matcher_(distance_matcher) {}
2418
2419 template <typename Container>
2420 operator Matcher<Container>() const {
2421 return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2422 }
2423
2424 template <typename Container>
2425 class Impl : public MatcherInterface<Container> {
2426 public:
2427 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2428 Container)>
2429 ContainerView;
2430 typedef typename std::iterator_traits<
2431 typename ContainerView::type::const_iterator>::difference_type
2432 DistanceType;
2433 explicit Impl(const DistanceMatcher& distance_matcher)
2434 : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2435
2436 void DescribeTo(::std::ostream* os) const override {
2437 *os << "distance between begin() and end() ";
2438 distance_matcher_.DescribeTo(os);
2439 }
2440 void DescribeNegationTo(::std::ostream* os) const override {
2441 *os << "distance between begin() and end() ";
2442 distance_matcher_.DescribeNegationTo(os);
2443 }
2444
2445 bool MatchAndExplain(Container container,
2446 MatchResultListener* listener) const override {
2447 using std::begin;
2448 using std::end;
2449 DistanceType distance = std::distance(begin(container), end(container));
2450 StringMatchResultListener distance_listener;
2451 const bool result =
2452 distance_matcher_.MatchAndExplain(distance, &distance_listener);
2453 *listener << "whose distance between begin() and end() " << distance
2454 << (result ? " matches" : " doesn't match");
2455 PrintIfNotEmpty(explanation: distance_listener.str(), os: listener->stream());
2456 return result;
2457 }
2458
2459 private:
2460 const Matcher<DistanceType> distance_matcher_;
2461 };
2462
2463 private:
2464 const DistanceMatcher distance_matcher_;
2465};
2466
2467// Implements an equality matcher for any STL-style container whose elements
2468// support ==. This matcher is like Eq(), but its failure explanations provide
2469// more detailed information that is useful when the container is used as a set.
2470// The failure message reports elements that are in one of the operands but not
2471// the other. The failure messages do not report duplicate or out-of-order
2472// elements in the containers (which don't properly matter to sets, but can
2473// occur if the containers are vectors or lists, for example).
2474//
2475// Uses the container's const_iterator, value_type, operator ==,
2476// begin(), and end().
2477template <typename Container>
2478class ContainerEqMatcher {
2479 public:
2480 typedef internal::StlContainerView<Container> View;
2481 typedef typename View::type StlContainer;
2482 typedef typename View::const_reference StlContainerReference;
2483
2484 static_assert(!std::is_const<Container>::value,
2485 "Container type must not be const");
2486 static_assert(!std::is_reference<Container>::value,
2487 "Container type must not be a reference");
2488
2489 // We make a copy of expected in case the elements in it are modified
2490 // after this matcher is created.
2491 explicit ContainerEqMatcher(const Container& expected)
2492 : expected_(View::Copy(expected)) {}
2493
2494 void DescribeTo(::std::ostream* os) const {
2495 *os << "equals ";
2496 UniversalPrint(expected_, os);
2497 }
2498 void DescribeNegationTo(::std::ostream* os) const {
2499 *os << "does not equal ";
2500 UniversalPrint(expected_, os);
2501 }
2502
2503 template <typename LhsContainer>
2504 bool MatchAndExplain(const LhsContainer& lhs,
2505 MatchResultListener* listener) const {
2506 typedef internal::StlContainerView<
2507 typename std::remove_const<LhsContainer>::type>
2508 LhsView;
2509 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2510 if (lhs_stl_container == expected_) return true;
2511
2512 ::std::ostream* const os = listener->stream();
2513 if (os != nullptr) {
2514 // Something is different. Check for extra values first.
2515 bool printed_header = false;
2516 for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end();
2517 ++it) {
2518 if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2519 expected_.end()) {
2520 if (printed_header) {
2521 *os << ", ";
2522 } else {
2523 *os << "which has these unexpected elements: ";
2524 printed_header = true;
2525 }
2526 UniversalPrint(*it, os);
2527 }
2528 }
2529
2530 // Now check for missing values.
2531 bool printed_header2 = false;
2532 for (auto it = expected_.begin(); it != expected_.end(); ++it) {
2533 if (internal::ArrayAwareFind(lhs_stl_container.begin(),
2534 lhs_stl_container.end(),
2535 *it) == lhs_stl_container.end()) {
2536 if (printed_header2) {
2537 *os << ", ";
2538 } else {
2539 *os << (printed_header ? ",\nand" : "which")
2540 << " doesn't have these expected elements: ";
2541 printed_header2 = true;
2542 }
2543 UniversalPrint(*it, os);
2544 }
2545 }
2546 }
2547
2548 return false;
2549 }
2550
2551 private:
2552 const StlContainer expected_;
2553};
2554
2555// A comparator functor that uses the < operator to compare two values.
2556struct LessComparator {
2557 template <typename T, typename U>
2558 bool operator()(const T& lhs, const U& rhs) const {
2559 return lhs < rhs;
2560 }
2561};
2562
2563// Implements WhenSortedBy(comparator, container_matcher).
2564template <typename Comparator, typename ContainerMatcher>
2565class WhenSortedByMatcher {
2566 public:
2567 WhenSortedByMatcher(const Comparator& comparator,
2568 const ContainerMatcher& matcher)
2569 : comparator_(comparator), matcher_(matcher) {}
2570
2571 template <typename LhsContainer>
2572 operator Matcher<LhsContainer>() const {
2573 return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2574 }
2575
2576 template <typename LhsContainer>
2577 class Impl : public MatcherInterface<LhsContainer> {
2578 public:
2579 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2580 LhsContainer)>
2581 LhsView;
2582 typedef typename LhsView::type LhsStlContainer;
2583 typedef typename LhsView::const_reference LhsStlContainerReference;
2584 // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2585 // so that we can match associative containers.
2586 typedef
2587 typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type
2588 LhsValue;
2589
2590 Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2591 : comparator_(comparator), matcher_(matcher) {}
2592
2593 void DescribeTo(::std::ostream* os) const override {
2594 *os << "(when sorted) ";
2595 matcher_.DescribeTo(os);
2596 }
2597
2598 void DescribeNegationTo(::std::ostream* os) const override {
2599 *os << "(when sorted) ";
2600 matcher_.DescribeNegationTo(os);
2601 }
2602
2603 bool MatchAndExplain(LhsContainer lhs,
2604 MatchResultListener* listener) const override {
2605 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2606 ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2607 lhs_stl_container.end());
2608 ::std::sort(sorted_container.begin(), sorted_container.end(),
2609 comparator_);
2610
2611 if (!listener->IsInterested()) {
2612 // If the listener is not interested, we do not need to
2613 // construct the inner explanation.
2614 return matcher_.Matches(sorted_container);
2615 }
2616
2617 *listener << "which is ";
2618 UniversalPrint(sorted_container, listener->stream());
2619 *listener << " when sorted";
2620
2621 StringMatchResultListener inner_listener;
2622 const bool match =
2623 matcher_.MatchAndExplain(sorted_container, &inner_listener);
2624 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
2625 return match;
2626 }
2627
2628 private:
2629 const Comparator comparator_;
2630 const Matcher<const ::std::vector<LhsValue>&> matcher_;
2631
2632 Impl(const Impl&) = delete;
2633 Impl& operator=(const Impl&) = delete;
2634 };
2635
2636 private:
2637 const Comparator comparator_;
2638 const ContainerMatcher matcher_;
2639};
2640
2641// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
2642// must be able to be safely cast to Matcher<std::tuple<const T1&, const
2643// T2&> >, where T1 and T2 are the types of elements in the LHS
2644// container and the RHS container respectively.
2645template <typename TupleMatcher, typename RhsContainer>
2646class PointwiseMatcher {
2647 static_assert(
2648 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2649 "use UnorderedPointwise with hash tables");
2650
2651 public:
2652 typedef internal::StlContainerView<RhsContainer> RhsView;
2653 typedef typename RhsView::type RhsStlContainer;
2654 typedef typename RhsStlContainer::value_type RhsValue;
2655
2656 static_assert(!std::is_const<RhsContainer>::value,
2657 "RhsContainer type must not be const");
2658 static_assert(!std::is_reference<RhsContainer>::value,
2659 "RhsContainer type must not be a reference");
2660
2661 // Like ContainerEq, we make a copy of rhs in case the elements in
2662 // it are modified after this matcher is created.
2663 PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2664 : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2665
2666 template <typename LhsContainer>
2667 operator Matcher<LhsContainer>() const {
2668 static_assert(
2669 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2670 "use UnorderedPointwise with hash tables");
2671
2672 return Matcher<LhsContainer>(
2673 new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2674 }
2675
2676 template <typename LhsContainer>
2677 class Impl : public MatcherInterface<LhsContainer> {
2678 public:
2679 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2680 LhsContainer)>
2681 LhsView;
2682 typedef typename LhsView::type LhsStlContainer;
2683 typedef typename LhsView::const_reference LhsStlContainerReference;
2684 typedef typename LhsStlContainer::value_type LhsValue;
2685 // We pass the LHS value and the RHS value to the inner matcher by
2686 // reference, as they may be expensive to copy. We must use tuple
2687 // instead of pair here, as a pair cannot hold references (C++ 98,
2688 // 20.2.2 [lib.pairs]).
2689 typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2690
2691 Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2692 // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2693 : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2694 rhs_(rhs) {}
2695
2696 void DescribeTo(::std::ostream* os) const override {
2697 *os << "contains " << rhs_.size()
2698 << " values, where each value and its corresponding value in ";
2699 UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2700 *os << " ";
2701 mono_tuple_matcher_.DescribeTo(os);
2702 }
2703 void DescribeNegationTo(::std::ostream* os) const override {
2704 *os << "doesn't contain exactly " << rhs_.size()
2705 << " values, or contains a value x at some index i"
2706 << " where x and the i-th value of ";
2707 UniversalPrint(rhs_, os);
2708 *os << " ";
2709 mono_tuple_matcher_.DescribeNegationTo(os);
2710 }
2711
2712 bool MatchAndExplain(LhsContainer lhs,
2713 MatchResultListener* listener) const override {
2714 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2715 const size_t actual_size = lhs_stl_container.size();
2716 if (actual_size != rhs_.size()) {
2717 *listener << "which contains " << actual_size << " values";
2718 return false;
2719 }
2720
2721 auto left = lhs_stl_container.begin();
2722 auto right = rhs_.begin();
2723 for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2724 if (listener->IsInterested()) {
2725 StringMatchResultListener inner_listener;
2726 // Create InnerMatcherArg as a temporarily object to avoid it outlives
2727 // *left and *right. Dereference or the conversion to `const T&` may
2728 // return temp objects, e.g. for vector<bool>.
2729 if (!mono_tuple_matcher_.MatchAndExplain(
2730 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2731 ImplicitCast_<const RhsValue&>(*right)),
2732 &inner_listener)) {
2733 *listener << "where the value pair (";
2734 UniversalPrint(*left, listener->stream());
2735 *listener << ", ";
2736 UniversalPrint(*right, listener->stream());
2737 *listener << ") at index #" << i << " don't match";
2738 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
2739 return false;
2740 }
2741 } else {
2742 if (!mono_tuple_matcher_.Matches(
2743 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2744 ImplicitCast_<const RhsValue&>(*right))))
2745 return false;
2746 }
2747 }
2748
2749 return true;
2750 }
2751
2752 private:
2753 const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2754 const RhsStlContainer rhs_;
2755 };
2756
2757 private:
2758 const TupleMatcher tuple_matcher_;
2759 const RhsStlContainer rhs_;
2760};
2761
2762// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2763template <typename Container>
2764class QuantifierMatcherImpl : public MatcherInterface<Container> {
2765 public:
2766 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2767 typedef StlContainerView<RawContainer> View;
2768 typedef typename View::type StlContainer;
2769 typedef typename View::const_reference StlContainerReference;
2770 typedef typename StlContainer::value_type Element;
2771
2772 template <typename InnerMatcher>
2773 explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2774 : inner_matcher_(
2775 testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2776
2777 // Checks whether:
2778 // * All elements in the container match, if all_elements_should_match.
2779 // * Any element in the container matches, if !all_elements_should_match.
2780 bool MatchAndExplainImpl(bool all_elements_should_match, Container container,
2781 MatchResultListener* listener) const {
2782 StlContainerReference stl_container = View::ConstReference(container);
2783 size_t i = 0;
2784 for (auto it = stl_container.begin(); it != stl_container.end();
2785 ++it, ++i) {
2786 StringMatchResultListener inner_listener;
2787 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2788
2789 if (matches != all_elements_should_match) {
2790 *listener << "whose element #" << i
2791 << (matches ? " matches" : " doesn't match");
2792 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
2793 return !all_elements_should_match;
2794 }
2795 }
2796 return all_elements_should_match;
2797 }
2798
2799 bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher,
2800 Container container,
2801 MatchResultListener* listener) const {
2802 StlContainerReference stl_container = View::ConstReference(container);
2803 size_t i = 0;
2804 std::vector<size_t> match_elements;
2805 for (auto it = stl_container.begin(); it != stl_container.end();
2806 ++it, ++i) {
2807 StringMatchResultListener inner_listener;
2808 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2809 if (matches) {
2810 match_elements.push_back(x: i);
2811 }
2812 }
2813 if (listener->IsInterested()) {
2814 if (match_elements.empty()) {
2815 *listener << "has no element that matches";
2816 } else if (match_elements.size() == 1) {
2817 *listener << "whose element #" << match_elements[0] << " matches";
2818 } else {
2819 *listener << "whose elements (";
2820 std::string sep = "";
2821 for (size_t e : match_elements) {
2822 *listener << sep << e;
2823 sep = ", ";
2824 }
2825 *listener << ") match";
2826 }
2827 }
2828 StringMatchResultListener count_listener;
2829 if (count_matcher.MatchAndExplain(x: match_elements.size(), listener: &count_listener)) {
2830 *listener << " and whose match quantity of " << match_elements.size()
2831 << " matches";
2832 PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream());
2833 return true;
2834 } else {
2835 if (match_elements.empty()) {
2836 *listener << " and";
2837 } else {
2838 *listener << " but";
2839 }
2840 *listener << " whose match quantity of " << match_elements.size()
2841 << " does not match";
2842 PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream());
2843 return false;
2844 }
2845 }
2846
2847 protected:
2848 const Matcher<const Element&> inner_matcher_;
2849};
2850
2851// Implements Contains(element_matcher) for the given argument type Container.
2852// Symmetric to EachMatcherImpl.
2853template <typename Container>
2854class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2855 public:
2856 template <typename InnerMatcher>
2857 explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2858 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2859
2860 // Describes what this matcher does.
2861 void DescribeTo(::std::ostream* os) const override {
2862 *os << "contains at least one element that ";
2863 this->inner_matcher_.DescribeTo(os);
2864 }
2865
2866 void DescribeNegationTo(::std::ostream* os) const override {
2867 *os << "doesn't contain any element that ";
2868 this->inner_matcher_.DescribeTo(os);
2869 }
2870
2871 bool MatchAndExplain(Container container,
2872 MatchResultListener* listener) const override {
2873 return this->MatchAndExplainImpl(false, container, listener);
2874 }
2875};
2876
2877// Implements DistanceFrom(target, get_distance, distance_matcher) for the given
2878// argument types:
2879// * V is the type of the value to be matched.
2880// * T is the type of the target value.
2881// * Distance is the type of the distance between V and T.
2882// * GetDistance is the type of the functor for computing the distance between
2883// V and T.
2884template <typename V, typename T, typename Distance, typename GetDistance>
2885class DistanceFromMatcherImpl : public MatcherInterface<V> {
2886 public:
2887 // Arguments:
2888 // * target: the target value.
2889 // * get_distance: the functor for computing the distance between the value
2890 // being matched and target.
2891 // * distance_matcher: the matcher for checking the distance.
2892 DistanceFromMatcherImpl(T target, GetDistance get_distance,
2893 Matcher<const Distance&> distance_matcher)
2894 : target_(std::move(target)),
2895 get_distance_(std::move(get_distance)),
2896 distance_matcher_(std::move(distance_matcher)) {}
2897
2898 // Describes what this matcher does.
2899 void DescribeTo(::std::ostream* os) const override {
2900 distance_matcher_.DescribeTo(os);
2901 *os << " away from " << PrintToString(target_);
2902 }
2903
2904 void DescribeNegationTo(::std::ostream* os) const override {
2905 distance_matcher_.DescribeNegationTo(os);
2906 *os << " away from " << PrintToString(target_);
2907 }
2908
2909 bool MatchAndExplain(V value, MatchResultListener* listener) const override {
2910 const auto distance = get_distance_(value, target_);
2911 const bool match = distance_matcher_.Matches(distance);
2912 if (!match && listener->IsInterested()) {
2913 *listener << "which is " << PrintToString(distance) << " away from "
2914 << PrintToString(target_);
2915 }
2916 return match;
2917 }
2918
2919 private:
2920 const T target_;
2921 const GetDistance get_distance_;
2922 const Matcher<const Distance&> distance_matcher_;
2923};
2924
2925// Implements Each(element_matcher) for the given argument type Container.
2926// Symmetric to ContainsMatcherImpl.
2927template <typename Container>
2928class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2929 public:
2930 template <typename InnerMatcher>
2931 explicit EachMatcherImpl(InnerMatcher inner_matcher)
2932 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2933
2934 // Describes what this matcher does.
2935 void DescribeTo(::std::ostream* os) const override {
2936 *os << "only contains elements that ";
2937 this->inner_matcher_.DescribeTo(os);
2938 }
2939
2940 void DescribeNegationTo(::std::ostream* os) const override {
2941 *os << "contains some element that ";
2942 this->inner_matcher_.DescribeNegationTo(os);
2943 }
2944
2945 bool MatchAndExplain(Container container,
2946 MatchResultListener* listener) const override {
2947 return this->MatchAndExplainImpl(true, container, listener);
2948 }
2949};
2950
2951// Implements Contains(element_matcher).Times(n) for the given argument type
2952// Container.
2953template <typename Container>
2954class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> {
2955 public:
2956 template <typename InnerMatcher>
2957 explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher,
2958 Matcher<size_t> count_matcher)
2959 : QuantifierMatcherImpl<Container>(inner_matcher),
2960 count_matcher_(std::move(count_matcher)) {}
2961
2962 void DescribeTo(::std::ostream* os) const override {
2963 *os << "quantity of elements that match ";
2964 this->inner_matcher_.DescribeTo(os);
2965 *os << " ";
2966 count_matcher_.DescribeTo(os);
2967 }
2968
2969 void DescribeNegationTo(::std::ostream* os) const override {
2970 *os << "quantity of elements that match ";
2971 this->inner_matcher_.DescribeTo(os);
2972 *os << " ";
2973 count_matcher_.DescribeNegationTo(os);
2974 }
2975
2976 bool MatchAndExplain(Container container,
2977 MatchResultListener* listener) const override {
2978 return this->MatchAndExplainImpl(count_matcher_, container, listener);
2979 }
2980
2981 private:
2982 const Matcher<size_t> count_matcher_;
2983};
2984
2985// Implements polymorphic Contains(element_matcher).Times(n).
2986template <typename M>
2987class ContainsTimesMatcher {
2988 public:
2989 explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher)
2990 : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {}
2991
2992 template <typename Container>
2993 operator Matcher<Container>() const { // NOLINT
2994 return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>(
2995 inner_matcher_, count_matcher_));
2996 }
2997
2998 private:
2999 const M inner_matcher_;
3000 const Matcher<size_t> count_matcher_;
3001};
3002
3003// Implements polymorphic Contains(element_matcher).
3004template <typename M>
3005class ContainsMatcher {
3006 public:
3007 explicit ContainsMatcher(M m) : inner_matcher_(m) {}
3008
3009 template <typename Container>
3010 operator Matcher<Container>() const { // NOLINT
3011 return Matcher<Container>(
3012 new ContainsMatcherImpl<const Container&>(inner_matcher_));
3013 }
3014
3015 ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const {
3016 return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher));
3017 }
3018
3019 private:
3020 const M inner_matcher_;
3021};
3022
3023// Implements polymorphic Each(element_matcher).
3024template <typename M>
3025class EachMatcher {
3026 public:
3027 explicit EachMatcher(M m) : inner_matcher_(m) {}
3028
3029 template <typename Container>
3030 operator Matcher<Container>() const { // NOLINT
3031 return Matcher<Container>(
3032 new EachMatcherImpl<const Container&>(inner_matcher_));
3033 }
3034
3035 private:
3036 const M inner_matcher_;
3037};
3038
3039namespace pair_getters {
3040using std::get;
3041template <typename T>
3042auto First(T& x, Rank0) -> decltype(get<0>(x)) { // NOLINT
3043 return get<0>(x);
3044}
3045template <typename T>
3046auto First(T& x, Rank1) -> decltype((x.first)) { // NOLINT
3047 return x.first;
3048}
3049
3050template <typename T>
3051auto Second(T& x, Rank0) -> decltype(get<1>(x)) { // NOLINT
3052 return get<1>(x);
3053}
3054template <typename T>
3055auto Second(T& x, Rank1) -> decltype((x.second)) { // NOLINT
3056 return x.second;
3057}
3058} // namespace pair_getters
3059
3060// Default functor for computing the distance between two values.
3061struct DefaultGetDistance {
3062 template <typename T, typename U>
3063 auto operator()(const T& lhs, const U& rhs) const {
3064 using std::abs;
3065 // Allow finding abs() in the type's namespace via ADL.
3066 return abs(lhs - rhs);
3067 }
3068};
3069
3070// Implements polymorphic DistanceFrom(target, get_distance, distance_matcher)
3071// matcher. Template arguments:
3072// * T is the type of the target value.
3073// * GetDistance is the type of the functor for computing the distance between
3074// the value being matched and the target.
3075// * DistanceMatcher is the type of the matcher for checking the distance.
3076template <typename T, typename GetDistance, typename DistanceMatcher>
3077class DistanceFromMatcher {
3078 public:
3079 // Arguments:
3080 // * target: the target value.
3081 // * get_distance: the functor for computing the distance between the value
3082 // being matched and target.
3083 // * distance_matcher: the matcher for checking the distance.
3084 DistanceFromMatcher(T target, GetDistance get_distance,
3085 DistanceMatcher distance_matcher)
3086 : target_(std::move(target)),
3087 get_distance_(std::move(get_distance)),
3088 distance_matcher_(std::move(distance_matcher)) {}
3089
3090 DistanceFromMatcher(const DistanceFromMatcher& other) = default;
3091
3092 // Implicitly converts to a monomorphic matcher of the given type.
3093 template <typename V>
3094 operator Matcher<V>() const { // NOLINT
3095 using Distance = decltype(get_distance_(std::declval<V>(), target_));
3096 return Matcher<V>(new DistanceFromMatcherImpl<V, T, Distance, GetDistance>(
3097 target_, get_distance_, distance_matcher_));
3098 }
3099
3100 private:
3101 const T target_;
3102 const GetDistance get_distance_;
3103 const DistanceMatcher distance_matcher_;
3104};
3105
3106// Implements Key(inner_matcher) for the given argument pair type.
3107// Key(inner_matcher) matches an std::pair whose 'first' field matches
3108// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
3109// std::map that contains at least one element whose key is >= 5.
3110template <typename PairType>
3111class KeyMatcherImpl : public MatcherInterface<PairType> {
3112 public:
3113 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3114 typedef typename RawPairType::first_type KeyType;
3115
3116 template <typename InnerMatcher>
3117 explicit KeyMatcherImpl(InnerMatcher inner_matcher)
3118 : inner_matcher_(
3119 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {}
3120
3121 // Returns true if and only if 'key_value.first' (the key) matches the inner
3122 // matcher.
3123 bool MatchAndExplain(PairType key_value,
3124 MatchResultListener* listener) const override {
3125 StringMatchResultListener inner_listener;
3126 const bool match = inner_matcher_.MatchAndExplain(
3127 pair_getters::First(key_value, Rank1()), &inner_listener);
3128 const std::string explanation = inner_listener.str();
3129 if (!explanation.empty()) {
3130 *listener << "whose first field is a value " << explanation;
3131 }
3132 return match;
3133 }
3134
3135 // Describes what this matcher does.
3136 void DescribeTo(::std::ostream* os) const override {
3137 *os << "has a key that ";
3138 inner_matcher_.DescribeTo(os);
3139 }
3140
3141 // Describes what the negation of this matcher does.
3142 void DescribeNegationTo(::std::ostream* os) const override {
3143 *os << "doesn't have a key that ";
3144 inner_matcher_.DescribeTo(os);
3145 }
3146
3147 private:
3148 const Matcher<const KeyType&> inner_matcher_;
3149};
3150
3151// Implements polymorphic Key(matcher_for_key).
3152template <typename M>
3153class KeyMatcher {
3154 public:
3155 explicit KeyMatcher(M m) : matcher_for_key_(m) {}
3156
3157 template <typename PairType>
3158 operator Matcher<PairType>() const {
3159 return Matcher<PairType>(
3160 new KeyMatcherImpl<const PairType&>(matcher_for_key_));
3161 }
3162
3163 private:
3164 const M matcher_for_key_;
3165};
3166
3167// Implements polymorphic Address(matcher_for_address).
3168template <typename InnerMatcher>
3169class AddressMatcher {
3170 public:
3171 explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
3172
3173 template <typename Type>
3174 operator Matcher<Type>() const { // NOLINT
3175 return Matcher<Type>(new Impl<const Type&>(matcher_));
3176 }
3177
3178 private:
3179 // The monomorphic implementation that works for a particular object type.
3180 template <typename Type>
3181 class Impl : public MatcherInterface<Type> {
3182 public:
3183 using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
3184 explicit Impl(const InnerMatcher& matcher)
3185 : matcher_(MatcherCast<Address>(matcher)) {}
3186
3187 void DescribeTo(::std::ostream* os) const override {
3188 *os << "has address that ";
3189 matcher_.DescribeTo(os);
3190 }
3191
3192 void DescribeNegationTo(::std::ostream* os) const override {
3193 *os << "does not have address that ";
3194 matcher_.DescribeTo(os);
3195 }
3196
3197 bool MatchAndExplain(Type object,
3198 MatchResultListener* listener) const override {
3199 *listener << "which has address ";
3200 Address address = std::addressof(object);
3201 return MatchPrintAndExplain(address, matcher_, listener);
3202 }
3203
3204 private:
3205 const Matcher<Address> matcher_;
3206 };
3207 const InnerMatcher matcher_;
3208};
3209
3210// Implements Pair(first_matcher, second_matcher) for the given argument pair
3211// type with its two matchers. See Pair() function below.
3212template <typename PairType>
3213class PairMatcherImpl : public MatcherInterface<PairType> {
3214 public:
3215 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3216 typedef typename RawPairType::first_type FirstType;
3217 typedef typename RawPairType::second_type SecondType;
3218
3219 template <typename FirstMatcher, typename SecondMatcher>
3220 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3221 : first_matcher_(
3222 testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3223 second_matcher_(
3224 testing::SafeMatcherCast<const SecondType&>(second_matcher)) {}
3225
3226 // Describes what this matcher does.
3227 void DescribeTo(::std::ostream* os) const override {
3228 *os << "has a first field that ";
3229 first_matcher_.DescribeTo(os);
3230 *os << ", and has a second field that ";
3231 second_matcher_.DescribeTo(os);
3232 }
3233
3234 // Describes what the negation of this matcher does.
3235 void DescribeNegationTo(::std::ostream* os) const override {
3236 *os << "has a first field that ";
3237 first_matcher_.DescribeNegationTo(os);
3238 *os << ", or has a second field that ";
3239 second_matcher_.DescribeNegationTo(os);
3240 }
3241
3242 // Returns true if and only if 'a_pair.first' matches first_matcher and
3243 // 'a_pair.second' matches second_matcher.
3244 bool MatchAndExplain(PairType a_pair,
3245 MatchResultListener* listener) const override {
3246 if (!listener->IsInterested()) {
3247 // If the listener is not interested, we don't need to construct the
3248 // explanation.
3249 return first_matcher_.Matches(pair_getters::First(a_pair, Rank1())) &&
3250 second_matcher_.Matches(pair_getters::Second(a_pair, Rank1()));
3251 }
3252 StringMatchResultListener first_inner_listener;
3253 if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank1()),
3254 &first_inner_listener)) {
3255 *listener << "whose first field does not match";
3256 PrintIfNotEmpty(explanation: first_inner_listener.str(), os: listener->stream());
3257 return false;
3258 }
3259 StringMatchResultListener second_inner_listener;
3260 if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank1()),
3261 &second_inner_listener)) {
3262 *listener << "whose second field does not match";
3263 PrintIfNotEmpty(explanation: second_inner_listener.str(), os: listener->stream());
3264 return false;
3265 }
3266 ExplainSuccess(first_explanation: first_inner_listener.str(), second_explanation: second_inner_listener.str(),
3267 listener);
3268 return true;
3269 }
3270
3271 private:
3272 void ExplainSuccess(const std::string& first_explanation,
3273 const std::string& second_explanation,
3274 MatchResultListener* listener) const {
3275 *listener << "whose both fields match";
3276 if (!first_explanation.empty()) {
3277 *listener << ", where the first field is a value " << first_explanation;
3278 }
3279 if (!second_explanation.empty()) {
3280 *listener << ", ";
3281 if (!first_explanation.empty()) {
3282 *listener << "and ";
3283 } else {
3284 *listener << "where ";
3285 }
3286 *listener << "the second field is a value " << second_explanation;
3287 }
3288 }
3289
3290 const Matcher<const FirstType&> first_matcher_;
3291 const Matcher<const SecondType&> second_matcher_;
3292};
3293
3294// Implements polymorphic Pair(first_matcher, second_matcher).
3295template <typename FirstMatcher, typename SecondMatcher>
3296class PairMatcher {
3297 public:
3298 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3299 : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3300
3301 template <typename PairType>
3302 operator Matcher<PairType>() const {
3303 return Matcher<PairType>(
3304 new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
3305 }
3306
3307 private:
3308 const FirstMatcher first_matcher_;
3309 const SecondMatcher second_matcher_;
3310};
3311
3312template <typename T, size_t... I>
3313auto UnpackStructImpl(const T& t, std::index_sequence<I...>, int)
3314 -> decltype(std::tie(get<I>(t)...)) {
3315 static_assert(std::tuple_size<T>::value == sizeof...(I),
3316 "Number of arguments doesn't match the number of fields.");
3317 return std::tie(get<I>(t)...);
3318}
3319
3320#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
3321template <typename T>
3322auto UnpackStructImpl(const T& t, std::make_index_sequence<1>, char) {
3323 const auto& [a] = t;
3324 return std::tie(a);
3325}
3326template <typename T>
3327auto UnpackStructImpl(const T& t, std::make_index_sequence<2>, char) {
3328 const auto& [a, b] = t;
3329 return std::tie(a, b);
3330}
3331template <typename T>
3332auto UnpackStructImpl(const T& t, std::make_index_sequence<3>, char) {
3333 const auto& [a, b, c] = t;
3334 return std::tie(a, b, c);
3335}
3336template <typename T>
3337auto UnpackStructImpl(const T& t, std::make_index_sequence<4>, char) {
3338 const auto& [a, b, c, d] = t;
3339 return std::tie(a, b, c, d);
3340}
3341template <typename T>
3342auto UnpackStructImpl(const T& t, std::make_index_sequence<5>, char) {
3343 const auto& [a, b, c, d, e] = t;
3344 return std::tie(a, b, c, d, e);
3345}
3346template <typename T>
3347auto UnpackStructImpl(const T& t, std::make_index_sequence<6>, char) {
3348 const auto& [a, b, c, d, e, f] = t;
3349 return std::tie(a, b, c, d, e, f);
3350}
3351template <typename T>
3352auto UnpackStructImpl(const T& t, std::make_index_sequence<7>, char) {
3353 const auto& [a, b, c, d, e, f, g] = t;
3354 return std::tie(a, b, c, d, e, f, g);
3355}
3356template <typename T>
3357auto UnpackStructImpl(const T& t, std::make_index_sequence<8>, char) {
3358 const auto& [a, b, c, d, e, f, g, h] = t;
3359 return std::tie(a, b, c, d, e, f, g, h);
3360}
3361template <typename T>
3362auto UnpackStructImpl(const T& t, std::make_index_sequence<9>, char) {
3363 const auto& [a, b, c, d, e, f, g, h, i] = t;
3364 return std::tie(a, b, c, d, e, f, g, h, i);
3365}
3366template <typename T>
3367auto UnpackStructImpl(const T& t, std::make_index_sequence<10>, char) {
3368 const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3369 return std::tie(a, b, c, d, e, f, g, h, i, j);
3370}
3371template <typename T>
3372auto UnpackStructImpl(const T& t, std::make_index_sequence<11>, char) {
3373 const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3374 return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3375}
3376template <typename T>
3377auto UnpackStructImpl(const T& t, std::make_index_sequence<12>, char) {
3378 const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3379 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3380}
3381template <typename T>
3382auto UnpackStructImpl(const T& t, std::make_index_sequence<13>, char) {
3383 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3384 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3385}
3386template <typename T>
3387auto UnpackStructImpl(const T& t, std::make_index_sequence<14>, char) {
3388 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3389 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3390}
3391template <typename T>
3392auto UnpackStructImpl(const T& t, std::make_index_sequence<15>, char) {
3393 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3394 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3395}
3396template <typename T>
3397auto UnpackStructImpl(const T& t, std::make_index_sequence<16>, char) {
3398 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3399 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3400}
3401template <typename T>
3402auto UnpackStructImpl(const T& t, std::make_index_sequence<17>, char) {
3403 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t;
3404 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q);
3405}
3406template <typename T>
3407auto UnpackStructImpl(const T& t, std::make_index_sequence<18>, char) {
3408 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t;
3409 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r);
3410}
3411template <typename T>
3412auto UnpackStructImpl(const T& t, std::make_index_sequence<19>, char) {
3413 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t;
3414 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s);
3415}
3416template <typename T>
3417auto UnpackStructImpl(const T& u, std::make_index_sequence<20>, char) {
3418 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t] = u;
3419 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t);
3420}
3421template <typename T>
3422auto UnpackStructImpl(const T& in, std::make_index_sequence<21>, char) {
3423 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u] =
3424 in;
3425 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t,
3426 u);
3427}
3428
3429template <typename T>
3430auto UnpackStructImpl(const T& in, std::make_index_sequence<22>, char) {
3431 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u,
3432 v] = in;
3433 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u,
3434 v);
3435}
3436#endif // defined(__cpp_structured_bindings)
3437
3438template <size_t I, typename T>
3439auto UnpackStruct(const T& t)
3440 -> decltype((UnpackStructImpl)(t, std::make_index_sequence<I>{}, 0)) {
3441 return (UnpackStructImpl)(t, std::make_index_sequence<I>{}, 0);
3442}
3443
3444// Helper function to do comma folding in C++11.
3445// The array ensures left-to-right order of evaluation.
3446// Usage: VariadicExpand({expr...});
3447template <typename T, size_t N>
3448void VariadicExpand(const T (&)[N]) {}
3449
3450template <typename Struct, typename StructSize>
3451class FieldsAreMatcherImpl;
3452
3453template <typename Struct, size_t... I>
3454class FieldsAreMatcherImpl<Struct, std::index_sequence<I...>>
3455 : public MatcherInterface<Struct> {
3456 using UnpackedType =
3457 decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3458 using MatchersType = std::tuple<
3459 Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3460
3461 public:
3462 template <typename Inner>
3463 explicit FieldsAreMatcherImpl(const Inner& matchers)
3464 : matchers_(testing::SafeMatcherCast<
3465 const typename std::tuple_element<I, UnpackedType>::type&>(
3466 std::get<I>(matchers))...) {}
3467
3468 void DescribeTo(::std::ostream* os) const override {
3469 const char* separator = "";
3470 VariadicExpand(
3471 {(*os << separator << "has field #" << I << " that ",
3472 std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3473 }
3474
3475 void DescribeNegationTo(::std::ostream* os) const override {
3476 const char* separator = "";
3477 VariadicExpand({(*os << separator << "has field #" << I << " that ",
3478 std::get<I>(matchers_).DescribeNegationTo(os),
3479 separator = ", or ")...});
3480 }
3481
3482 bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3483 return MatchInternal(tuple: (UnpackStruct<sizeof...(I)>)(t), listener);
3484 }
3485
3486 private:
3487 bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3488 if (!listener->IsInterested()) {
3489 // If the listener is not interested, we don't need to construct the
3490 // explanation.
3491 bool good = true;
3492 VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3493 std::get<I>(tuple))...});
3494 return good;
3495 }
3496
3497 size_t failed_pos = ~size_t{};
3498
3499 std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3500
3501 VariadicExpand(
3502 {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3503 std::get<I>(tuple), &inner_listener[I])
3504 ? failed_pos = I
3505 : 0 ...});
3506 if (failed_pos != ~size_t{}) {
3507 *listener << "whose field #" << failed_pos << " does not match";
3508 PrintIfNotEmpty(explanation: inner_listener[failed_pos].str(), os: listener->stream());
3509 return false;
3510 }
3511
3512 *listener << "whose all elements match";
3513 const char* separator = ", where";
3514 for (size_t index = 0; index < sizeof...(I); ++index) {
3515 const std::string str = inner_listener[index].str();
3516 if (!str.empty()) {
3517 *listener << separator << " field #" << index << " is a value " << str;
3518 separator = ", and";
3519 }
3520 }
3521
3522 return true;
3523 }
3524
3525 MatchersType matchers_;
3526};
3527
3528template <typename... Inner>
3529class FieldsAreMatcher {
3530 public:
3531 explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3532
3533 template <typename Struct>
3534 operator Matcher<Struct>() const { // NOLINT
3535 return Matcher<Struct>(
3536 new FieldsAreMatcherImpl<const Struct&,
3537 std::index_sequence_for<Inner...>>(matchers_));
3538 }
3539
3540 private:
3541 std::tuple<Inner...> matchers_;
3542};
3543
3544// Implements ElementsAre() and ElementsAreArray().
3545template <typename Container>
3546class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3547 public:
3548 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3549 typedef internal::StlContainerView<RawContainer> View;
3550 typedef typename View::type StlContainer;
3551 typedef typename View::const_reference StlContainerReference;
3552 typedef typename StlContainer::value_type Element;
3553
3554 // Constructs the matcher from a sequence of element values or
3555 // element matchers.
3556 template <typename InputIter>
3557 ElementsAreMatcherImpl(InputIter first, InputIter last) {
3558 while (first != last) {
3559 matchers_.push_back(MatcherCast<const Element&>(*first++));
3560 }
3561 }
3562
3563 // Describes what this matcher does.
3564 void DescribeTo(::std::ostream* os) const override {
3565 if (count() == 0) {
3566 *os << "is empty";
3567 } else if (count() == 1) {
3568 *os << "has 1 element that ";
3569 matchers_[0].DescribeTo(os);
3570 } else {
3571 *os << "has " << Elements(count: count()) << " where\n";
3572 for (size_t i = 0; i != count(); ++i) {
3573 *os << "element #" << i << " ";
3574 matchers_[i].DescribeTo(os);
3575 if (i + 1 < count()) {
3576 *os << ",\n";
3577 }
3578 }
3579 }
3580 }
3581
3582 // Describes what the negation of this matcher does.
3583 void DescribeNegationTo(::std::ostream* os) const override {
3584 if (count() == 0) {
3585 *os << "isn't empty";
3586 return;
3587 }
3588
3589 *os << "doesn't have " << Elements(count: count()) << ", or\n";
3590 for (size_t i = 0; i != count(); ++i) {
3591 *os << "element #" << i << " ";
3592 matchers_[i].DescribeNegationTo(os);
3593 if (i + 1 < count()) {
3594 *os << ", or\n";
3595 }
3596 }
3597 }
3598
3599 bool MatchAndExplain(Container container,
3600 MatchResultListener* listener) const override {
3601 // To work with stream-like "containers", we must only walk
3602 // through the elements in one pass.
3603
3604 const bool listener_interested = listener->IsInterested();
3605
3606 // explanations[i] is the explanation of the element at index i.
3607 ::std::vector<std::string> explanations(count());
3608 StlContainerReference stl_container = View::ConstReference(container);
3609 auto it = stl_container.begin();
3610 size_t exam_pos = 0;
3611 bool unmatched_found = false;
3612
3613 // Go through the elements and matchers in pairs, until we reach
3614 // the end of either the elements or the matchers, or until we find a
3615 // mismatch.
3616 for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3617 bool match; // Does the current element match the current matcher?
3618 if (listener_interested) {
3619 StringMatchResultListener s;
3620 match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3621 explanations[exam_pos] = s.str();
3622 } else {
3623 match = matchers_[exam_pos].Matches(*it);
3624 }
3625
3626 if (!match) {
3627 unmatched_found = true;
3628 // We cannot store the iterator for the unmatched element to be used
3629 // later, as some users use ElementsAre() with a "container" whose
3630 // iterator is not copy-constructible or copy-assignable.
3631 //
3632 // We cannot store a pointer to the element either, as some container's
3633 // iterators return a temporary.
3634 //
3635 // We cannot store the element itself either, as the element may not be
3636 // copyable.
3637 //
3638 // Therefore, we just remember the index of the unmatched element,
3639 // and use it later to print the unmatched element.
3640 break;
3641 }
3642 }
3643 // If unmatched_found is true, exam_pos is the index of the mismatch.
3644
3645 // Find how many elements the actual container has. We avoid
3646 // calling size() s.t. this code works for stream-like "containers"
3647 // that don't define size().
3648 size_t actual_count = exam_pos;
3649 for (; it != stl_container.end(); ++it) {
3650 ++actual_count;
3651 }
3652
3653 if (actual_count != count()) {
3654 // The element count doesn't match. If the container is empty,
3655 // there's no need to explain anything as Google Mock already
3656 // prints the empty container. Otherwise we just need to show
3657 // how many elements there actually are.
3658 if (listener_interested && (actual_count != 0)) {
3659 *listener << "which has " << Elements(count: actual_count);
3660 }
3661 return false;
3662 }
3663
3664 if (unmatched_found) {
3665 // The element count matches, but the exam_pos-th element doesn't match.
3666 if (listener_interested) {
3667 // Find the unmatched element.
3668 auto unmatched_it = stl_container.begin();
3669 // We cannot call std::advance() on the iterator, as some users use
3670 // ElementsAre() with a "container" whose iterator is incompatible with
3671 // std::advance() (e.g. it may not have the difference_type member
3672 // type).
3673 for (size_t i = 0; i != exam_pos; ++i) {
3674 ++unmatched_it;
3675 }
3676
3677 // If the array is long or the elements' print-out is large, it may be
3678 // hard for the user to find the mismatched element and its
3679 // corresponding matcher description. Therefore we print the index, the
3680 // value of the mismatched element, and the corresponding matcher
3681 // description to ease debugging.
3682 *listener << "whose element #" << exam_pos << " ("
3683 << PrintToString(*unmatched_it) << ") ";
3684 matchers_[exam_pos].DescribeNegationTo(listener->stream());
3685 PrintIfNotEmpty(explanation: explanations[exam_pos], os: listener->stream());
3686 }
3687 return false;
3688 }
3689
3690 // Every element matches its expectation. We need to explain why
3691 // (the obvious ones can be skipped).
3692 if (listener_interested) {
3693 bool reason_printed = false;
3694 for (size_t i = 0; i != count(); ++i) {
3695 const std::string& s = explanations[i];
3696 if (!s.empty()) {
3697 if (reason_printed) {
3698 *listener << ",\nand ";
3699 }
3700 *listener << "whose element #" << i << " matches, " << s;
3701 reason_printed = true;
3702 }
3703 }
3704 }
3705 return true;
3706 }
3707
3708 private:
3709 static Message Elements(size_t count) {
3710 return Message() << count << (count == 1 ? " element" : " elements");
3711 }
3712
3713 size_t count() const { return matchers_.size(); }
3714
3715 ::std::vector<Matcher<const Element&>> matchers_;
3716};
3717
3718// Connectivity matrix of (elements X matchers), in element-major order.
3719// Initially, there are no edges.
3720// Use NextGraph() to iterate over all possible edge configurations.
3721// Use Randomize() to generate a random edge configuration.
3722class GTEST_API_ MatchMatrix {
3723 public:
3724 MatchMatrix(size_t num_elements, size_t num_matchers)
3725 : num_elements_(num_elements),
3726 num_matchers_(num_matchers),
3727 matched_(num_elements_ * num_matchers_, 0) {}
3728
3729 size_t LhsSize() const { return num_elements_; }
3730 size_t RhsSize() const { return num_matchers_; }
3731 bool HasEdge(size_t ilhs, size_t irhs) const {
3732 return matched_[SpaceIndex(ilhs, irhs)] == 1;
3733 }
3734 void SetEdge(size_t ilhs, size_t irhs, bool b) {
3735 matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3736 }
3737
3738 // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3739 // adds 1 to that number; returns false if incrementing the graph left it
3740 // empty.
3741 bool NextGraph();
3742
3743 void Randomize();
3744
3745 std::string DebugString() const;
3746
3747 private:
3748 size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3749 return ilhs * num_matchers_ + irhs;
3750 }
3751
3752 size_t num_elements_;
3753 size_t num_matchers_;
3754
3755 // Each element is a char interpreted as bool. They are stored as a
3756 // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3757 // a (ilhs, irhs) matrix coordinate into an offset.
3758 ::std::vector<char> matched_;
3759};
3760
3761typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3762typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3763
3764// Returns a maximum bipartite matching for the specified graph 'g'.
3765// The matching is represented as a vector of {element, matcher} pairs.
3766GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
3767
3768struct UnorderedMatcherRequire {
3769 enum Flags {
3770 Superset = 1 << 0,
3771 Subset = 1 << 1,
3772 ExactMatch = Superset | Subset,
3773 };
3774};
3775
3776// Untyped base class for implementing UnorderedElementsAre. By
3777// putting logic that's not specific to the element type here, we
3778// reduce binary bloat and increase compilation speed.
3779class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3780 protected:
3781 explicit UnorderedElementsAreMatcherImplBase(
3782 UnorderedMatcherRequire::Flags matcher_flags)
3783 : match_flags_(matcher_flags) {}
3784
3785 // A vector of matcher describers, one for each element matcher.
3786 // Does not own the describers (and thus can be used only when the
3787 // element matchers are alive).
3788 typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3789
3790 // Describes this UnorderedElementsAre matcher.
3791 void DescribeToImpl(::std::ostream* os) const;
3792
3793 // Describes the negation of this UnorderedElementsAre matcher.
3794 void DescribeNegationToImpl(::std::ostream* os) const;
3795
3796 bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3797 const MatchMatrix& matrix,
3798 MatchResultListener* listener) const;
3799
3800 bool FindPairing(const MatchMatrix& matrix,
3801 MatchResultListener* listener) const;
3802
3803 MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
3804
3805 static Message Elements(size_t n) {
3806 return Message() << n << " element" << (n == 1 ? "" : "s");
3807 }
3808
3809 UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3810
3811 private:
3812 UnorderedMatcherRequire::Flags match_flags_;
3813 MatcherDescriberVec matcher_describers_;
3814};
3815
3816// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3817// IsSupersetOf.
3818template <typename Container>
3819class UnorderedElementsAreMatcherImpl
3820 : public MatcherInterface<Container>,
3821 public UnorderedElementsAreMatcherImplBase {
3822 public:
3823 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3824 typedef internal::StlContainerView<RawContainer> View;
3825 typedef typename View::type StlContainer;
3826 typedef typename View::const_reference StlContainerReference;
3827 typedef typename StlContainer::value_type Element;
3828
3829 template <typename InputIter>
3830 UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3831 InputIter first, InputIter last)
3832 : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3833 for (; first != last; ++first) {
3834 matchers_.push_back(MatcherCast<const Element&>(*first));
3835 }
3836 for (const auto& m : matchers_) {
3837 matcher_describers().push_back(m.GetDescriber());
3838 }
3839 }
3840
3841 // Describes what this matcher does.
3842 void DescribeTo(::std::ostream* os) const override {
3843 return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3844 }
3845
3846 // Describes what the negation of this matcher does.
3847 void DescribeNegationTo(::std::ostream* os) const override {
3848 return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3849 }
3850
3851 bool MatchAndExplain(Container container,
3852 MatchResultListener* listener) const override {
3853 StlContainerReference stl_container = View::ConstReference(container);
3854 ::std::vector<std::string> element_printouts;
3855 MatchMatrix matrix =
3856 AnalyzeElements(stl_container.begin(), stl_container.end(),
3857 &element_printouts, listener);
3858
3859 return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3860 FindPairing(matrix, listener);
3861 }
3862
3863 private:
3864 template <typename ElementIter>
3865 MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3866 ::std::vector<std::string>* element_printouts,
3867 MatchResultListener* listener) const {
3868 element_printouts->clear();
3869 ::std::vector<char> did_match;
3870 size_t num_elements = 0;
3871 DummyMatchResultListener dummy;
3872 for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3873 if (listener->IsInterested()) {
3874 element_printouts->push_back(PrintToString(*elem_first));
3875 }
3876 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3877 did_match.push_back(
3878 matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3879 }
3880 }
3881
3882 MatchMatrix matrix(num_elements, matchers_.size());
3883 ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3884 for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3885 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3886 matrix.SetEdge(ilhs, irhs, b: *did_match_iter++ != 0);
3887 }
3888 }
3889 return matrix;
3890 }
3891
3892 ::std::vector<Matcher<const Element&>> matchers_;
3893};
3894
3895// Functor for use in TransformTuple.
3896// Performs MatcherCast<Target> on an input argument of any type.
3897template <typename Target>
3898struct CastAndAppendTransform {
3899 template <typename Arg>
3900 Matcher<Target> operator()(const Arg& a) const {
3901 return MatcherCast<Target>(a);
3902 }
3903};
3904
3905// Implements UnorderedElementsAre.
3906template <typename MatcherTuple>
3907class UnorderedElementsAreMatcher {
3908 public:
3909 explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3910 : matchers_(args) {}
3911
3912 template <typename Container>
3913 operator Matcher<Container>() const {
3914 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3915 typedef typename internal::StlContainerView<RawContainer>::type View;
3916 typedef typename View::value_type Element;
3917 typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3918 MatcherVec matchers;
3919 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3920 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3921 ::std::back_inserter(matchers));
3922 return Matcher<Container>(
3923 new UnorderedElementsAreMatcherImpl<const Container&>(
3924 UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3925 matchers.end()));
3926 }
3927
3928 private:
3929 const MatcherTuple matchers_;
3930};
3931
3932// Implements ElementsAre.
3933template <typename MatcherTuple>
3934class ElementsAreMatcher {
3935 public:
3936 explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3937
3938 template <typename Container>
3939 operator Matcher<Container>() const {
3940 static_assert(
3941 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3942 ::std::tuple_size<MatcherTuple>::value < 2,
3943 "use UnorderedElementsAre with hash tables");
3944
3945 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3946 typedef typename internal::StlContainerView<RawContainer>::type View;
3947 typedef typename View::value_type Element;
3948 typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3949 MatcherVec matchers;
3950 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3951 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3952 ::std::back_inserter(matchers));
3953 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3954 matchers.begin(), matchers.end()));
3955 }
3956
3957 private:
3958 const MatcherTuple matchers_;
3959};
3960
3961// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3962template <typename T>
3963class UnorderedElementsAreArrayMatcher {
3964 public:
3965 template <typename Iter>
3966 UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3967 Iter first, Iter last)
3968 : match_flags_(match_flags), matchers_(first, last) {}
3969
3970 template <typename Container>
3971 operator Matcher<Container>() const {
3972 return Matcher<Container>(
3973 new UnorderedElementsAreMatcherImpl<const Container&>(
3974 match_flags_, matchers_.begin(), matchers_.end()));
3975 }
3976
3977 private:
3978 UnorderedMatcherRequire::Flags match_flags_;
3979 std::vector<std::remove_const_t<T>> matchers_;
3980};
3981
3982// Implements ElementsAreArray().
3983template <typename T>
3984class ElementsAreArrayMatcher {
3985 public:
3986 template <typename Iter>
3987 ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3988
3989 template <typename Container>
3990 operator Matcher<Container>() const {
3991 static_assert(
3992 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3993 "use UnorderedElementsAreArray with hash tables");
3994
3995 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3996 matchers_.begin(), matchers_.end()));
3997 }
3998
3999 private:
4000 const std::vector<std::remove_const_t<T>> matchers_;
4001};
4002
4003// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
4004// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
4005// second) is a polymorphic matcher that matches a value x if and only if
4006// tm matches tuple (x, second). Useful for implementing
4007// UnorderedPointwise() in terms of UnorderedElementsAreArray().
4008//
4009// BoundSecondMatcher is copyable and assignable, as we need to put
4010// instances of this class in a vector when implementing
4011// UnorderedPointwise().
4012template <typename Tuple2Matcher, typename Second>
4013class BoundSecondMatcher {
4014 public:
4015 BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
4016 : tuple2_matcher_(tm), second_value_(second) {}
4017
4018 BoundSecondMatcher(const BoundSecondMatcher& other) = default;
4019
4020 template <typename T>
4021 operator Matcher<T>() const {
4022 return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
4023 }
4024
4025 // We have to define this for UnorderedPointwise() to compile in
4026 // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
4027 // which requires the elements to be assignable in C++98. The
4028 // compiler cannot generate the operator= for us, as Tuple2Matcher
4029 // and Second may not be assignable.
4030 //
4031 // However, this should never be called, so the implementation just
4032 // need to assert.
4033 void operator=(const BoundSecondMatcher& /*rhs*/) {
4034 GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
4035 }
4036
4037 private:
4038 template <typename T>
4039 class Impl : public MatcherInterface<T> {
4040 public:
4041 typedef ::std::tuple<T, Second> ArgTuple;
4042
4043 Impl(const Tuple2Matcher& tm, const Second& second)
4044 : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
4045 second_value_(second) {}
4046
4047 void DescribeTo(::std::ostream* os) const override {
4048 *os << "and ";
4049 UniversalPrint(second_value_, os);
4050 *os << " ";
4051 mono_tuple2_matcher_.DescribeTo(os);
4052 }
4053
4054 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
4055 return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
4056 listener);
4057 }
4058
4059 private:
4060 const Matcher<const ArgTuple&> mono_tuple2_matcher_;
4061 const Second second_value_;
4062 };
4063
4064 const Tuple2Matcher tuple2_matcher_;
4065 const Second second_value_;
4066};
4067
4068// Given a 2-tuple matcher tm and a value second,
4069// MatcherBindSecond(tm, second) returns a matcher that matches a
4070// value x if and only if tm matches tuple (x, second). Useful for
4071// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
4072template <typename Tuple2Matcher, typename Second>
4073BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
4074 const Tuple2Matcher& tm, const Second& second) {
4075 return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
4076}
4077
4078// Returns the description for a matcher defined using the MATCHER*()
4079// macro where the user-supplied description string is "", if
4080// 'negation' is false; otherwise returns the description of the
4081// negation of the matcher. 'param_values' contains a list of strings
4082// that are the print-out of the matcher's parameters.
4083GTEST_API_ std::string FormatMatcherDescription(
4084 bool negation, const char* matcher_name,
4085 const std::vector<const char*>& param_names, const Strings& param_values);
4086
4087// Overloads to support `OptionalMatcher` being used with a type that either
4088// supports implicit conversion to bool or a `has_value()` method.
4089template <typename Optional>
4090auto IsOptionalEngaged(const Optional& optional, Rank1)
4091 -> decltype(!!optional) {
4092 // The use of double-negation here is to preserve historical behavior where
4093 // the matcher used `operator!` rather than directly using `operator bool`.
4094 return !static_cast<bool>(!optional);
4095}
4096template <typename Optional>
4097auto IsOptionalEngaged(const Optional& optional, Rank0)
4098 -> decltype(!optional.has_value()) {
4099 return optional.has_value();
4100}
4101
4102// Implements a matcher that checks the value of a optional<> type variable.
4103template <typename ValueMatcher>
4104class OptionalMatcher {
4105 public:
4106 explicit OptionalMatcher(const ValueMatcher& value_matcher)
4107 : value_matcher_(value_matcher) {}
4108
4109 template <typename Optional>
4110 operator Matcher<Optional>() const {
4111 return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
4112 }
4113
4114 template <typename Optional>
4115 class Impl : public MatcherInterface<Optional> {
4116 public:
4117 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
4118 typedef typename OptionalView::value_type ValueType;
4119 explicit Impl(const ValueMatcher& value_matcher)
4120 : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
4121
4122 void DescribeTo(::std::ostream* os) const override {
4123 *os << "value ";
4124 value_matcher_.DescribeTo(os);
4125 }
4126
4127 void DescribeNegationTo(::std::ostream* os) const override {
4128 *os << "value ";
4129 value_matcher_.DescribeNegationTo(os);
4130 }
4131
4132 bool MatchAndExplain(Optional optional,
4133 MatchResultListener* listener) const override {
4134 if (!IsOptionalEngaged(optional, HighestRank())) {
4135 *listener << "which is not engaged";
4136 return false;
4137 }
4138 const ValueType& value = *optional;
4139 if (!listener->IsInterested()) {
4140 // Fast path to avoid unnecessary generation of match explanation.
4141 return value_matcher_.Matches(value);
4142 }
4143 StringMatchResultListener value_listener;
4144 const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
4145 *listener << "whose value " << PrintToString(value)
4146 << (match ? " matches" : " doesn't match");
4147 PrintIfNotEmpty(explanation: value_listener.str(), os: listener->stream());
4148 return match;
4149 }
4150
4151 private:
4152 const Matcher<ValueType> value_matcher_;
4153 };
4154
4155 private:
4156 const ValueMatcher value_matcher_;
4157};
4158
4159namespace variant_matcher {
4160// Overloads to allow VariantMatcher to do proper ADL lookup.
4161template <typename T>
4162void holds_alternative() {}
4163template <typename T>
4164void get() {}
4165
4166// Implements a matcher that checks the value of a variant<> type variable.
4167template <typename T>
4168class VariantMatcher {
4169 public:
4170 explicit VariantMatcher(::testing::Matcher<const T&> matcher)
4171 : matcher_(std::move(matcher)) {}
4172
4173 template <typename Variant>
4174 bool MatchAndExplain(const Variant& value,
4175 ::testing::MatchResultListener* listener) const {
4176 using std::get;
4177 if (!listener->IsInterested()) {
4178 return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
4179 }
4180
4181 if (!holds_alternative<T>(value)) {
4182 *listener << "whose value is not of type '" << GetTypeName() << "'";
4183 return false;
4184 }
4185
4186 const T& elem = get<T>(value);
4187 StringMatchResultListener elem_listener;
4188 const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
4189 *listener << "whose value " << PrintToString(elem)
4190 << (match ? " matches" : " doesn't match");
4191 PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream());
4192 return match;
4193 }
4194
4195 void DescribeTo(std::ostream* os) const {
4196 *os << "is a variant<> with value of type '" << GetTypeName()
4197 << "' and the value ";
4198 matcher_.DescribeTo(os);
4199 }
4200
4201 void DescribeNegationTo(std::ostream* os) const {
4202 *os << "is a variant<> with value of type other than '" << GetTypeName()
4203 << "' or the value ";
4204 matcher_.DescribeNegationTo(os);
4205 }
4206
4207 private:
4208 static std::string GetTypeName() {
4209#if GTEST_HAS_RTTI
4210 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4211 return internal::GetTypeName<T>());
4212#endif
4213 return "the element type";
4214 }
4215
4216 const ::testing::Matcher<const T&> matcher_;
4217};
4218
4219} // namespace variant_matcher
4220
4221namespace any_cast_matcher {
4222
4223// Overloads to allow AnyCastMatcher to do proper ADL lookup.
4224template <typename T>
4225void any_cast() {}
4226
4227// Implements a matcher that any_casts the value.
4228template <typename T>
4229class AnyCastMatcher {
4230 public:
4231 explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
4232 : matcher_(matcher) {}
4233
4234 template <typename AnyType>
4235 bool MatchAndExplain(const AnyType& value,
4236 ::testing::MatchResultListener* listener) const {
4237 if (!listener->IsInterested()) {
4238 const T* ptr = any_cast<T>(&value);
4239 return ptr != nullptr && matcher_.Matches(*ptr);
4240 }
4241
4242 const T* elem = any_cast<T>(&value);
4243 if (elem == nullptr) {
4244 *listener << "whose value is not of type '" << GetTypeName() << "'";
4245 return false;
4246 }
4247
4248 StringMatchResultListener elem_listener;
4249 const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4250 *listener << "whose value " << PrintToString(*elem)
4251 << (match ? " matches" : " doesn't match");
4252 PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream());
4253 return match;
4254 }
4255
4256 void DescribeTo(std::ostream* os) const {
4257 *os << "is an 'any' type with value of type '" << GetTypeName()
4258 << "' and the value ";
4259 matcher_.DescribeTo(os);
4260 }
4261
4262 void DescribeNegationTo(std::ostream* os) const {
4263 *os << "is an 'any' type with value of type other than '" << GetTypeName()
4264 << "' or the value ";
4265 matcher_.DescribeNegationTo(os);
4266 }
4267
4268 private:
4269 static std::string GetTypeName() {
4270#if GTEST_HAS_RTTI
4271 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4272 return internal::GetTypeName<T>());
4273#endif
4274 return "the element type";
4275 }
4276
4277 const ::testing::Matcher<const T&> matcher_;
4278};
4279
4280} // namespace any_cast_matcher
4281
4282// Implements the Args() matcher.
4283template <class ArgsTuple, size_t... k>
4284class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
4285 public:
4286 using RawArgsTuple = typename std::decay<ArgsTuple>::type;
4287 using SelectedArgs =
4288 std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
4289 using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
4290
4291 template <typename InnerMatcher>
4292 explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
4293 : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
4294
4295 bool MatchAndExplain(ArgsTuple args,
4296 MatchResultListener* listener) const override {
4297 // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
4298 (void)args;
4299 const SelectedArgs& selected_args =
4300 std::forward_as_tuple(std::get<k>(args)...);
4301 if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
4302
4303 PrintIndices(os: listener->stream());
4304 *listener << "are " << PrintToString(selected_args);
4305
4306 StringMatchResultListener inner_listener;
4307 const bool match =
4308 inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
4309 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
4310 return match;
4311 }
4312
4313 void DescribeTo(::std::ostream* os) const override {
4314 *os << "are a tuple ";
4315 PrintIndices(os);
4316 inner_matcher_.DescribeTo(os);
4317 }
4318
4319 void DescribeNegationTo(::std::ostream* os) const override {
4320 *os << "are a tuple ";
4321 PrintIndices(os);
4322 inner_matcher_.DescribeNegationTo(os);
4323 }
4324
4325 private:
4326 // Prints the indices of the selected fields.
4327 static void PrintIndices(::std::ostream* os) {
4328 *os << "whose fields (";
4329 const char* sep = "";
4330 // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
4331 (void)sep;
4332 // The static_cast to void is needed to silence Clang's -Wcomma warning.
4333 // This pattern looks suspiciously like we may have mismatched parentheses
4334 // and may have been trying to use the first operation of the comma operator
4335 // as a member of the array, so Clang warns that we may have made a mistake.
4336 const char* dummy[] = {
4337 "", (static_cast<void>(*os << sep << "#" << k), sep = ", ")...};
4338 (void)dummy;
4339 *os << ") ";
4340 }
4341
4342 MonomorphicInnerMatcher inner_matcher_;
4343};
4344
4345template <class InnerMatcher, size_t... k>
4346class ArgsMatcher {
4347 public:
4348 explicit ArgsMatcher(InnerMatcher inner_matcher)
4349 : inner_matcher_(std::move(inner_matcher)) {}
4350
4351 template <typename ArgsTuple>
4352 operator Matcher<ArgsTuple>() const { // NOLINT
4353 return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
4354 }
4355
4356 private:
4357 InnerMatcher inner_matcher_;
4358};
4359
4360} // namespace internal
4361
4362// ElementsAreArray(iterator_first, iterator_last)
4363// ElementsAreArray(pointer, count)
4364// ElementsAreArray(array)
4365// ElementsAreArray(container)
4366// ElementsAreArray({ e1, e2, ..., en })
4367//
4368// The ElementsAreArray() functions are like ElementsAre(...), except
4369// that they are given a homogeneous sequence rather than taking each
4370// element as a function argument. The sequence can be specified as an
4371// array, a pointer and count, a vector, an initializer list, or an
4372// STL iterator range. In each of these cases, the underlying sequence
4373// can be either a sequence of values or a sequence of matchers.
4374//
4375// All forms of ElementsAreArray() make a copy of the input matcher sequence.
4376
4377template <typename Iter>
4378inline internal::ElementsAreArrayMatcher<
4379 typename ::std::iterator_traits<Iter>::value_type>
4380ElementsAreArray(Iter first, Iter last) {
4381 typedef typename ::std::iterator_traits<Iter>::value_type T;
4382 return internal::ElementsAreArrayMatcher<T>(first, last);
4383}
4384
4385template <typename T>
4386inline auto ElementsAreArray(const T* pointer, size_t count)
4387 -> decltype(ElementsAreArray(pointer, pointer + count)) {
4388 return ElementsAreArray(pointer, pointer + count);
4389}
4390
4391template <typename T, size_t N>
4392inline auto ElementsAreArray(const T (&array)[N])
4393 -> decltype(ElementsAreArray(array, N)) {
4394 return ElementsAreArray(array, N);
4395}
4396
4397template <typename Container>
4398inline auto ElementsAreArray(const Container& container)
4399 -> decltype(ElementsAreArray(container.begin(), container.end())) {
4400 return ElementsAreArray(container.begin(), container.end());
4401}
4402
4403template <typename T>
4404inline auto ElementsAreArray(::std::initializer_list<T> xs)
4405 -> decltype(ElementsAreArray(xs.begin(), xs.end())) {
4406 return ElementsAreArray(xs.begin(), xs.end());
4407}
4408
4409// UnorderedElementsAreArray(iterator_first, iterator_last)
4410// UnorderedElementsAreArray(pointer, count)
4411// UnorderedElementsAreArray(array)
4412// UnorderedElementsAreArray(container)
4413// UnorderedElementsAreArray({ e1, e2, ..., en })
4414//
4415// UnorderedElementsAreArray() verifies that a bijective mapping onto a
4416// collection of matchers exists.
4417//
4418// The matchers can be specified as an array, a pointer and count, a container,
4419// an initializer list, or an STL iterator range. In each of these cases, the
4420// underlying matchers can be either values or matchers.
4421
4422template <typename Iter>
4423inline internal::UnorderedElementsAreArrayMatcher<
4424 typename ::std::iterator_traits<Iter>::value_type>
4425UnorderedElementsAreArray(Iter first, Iter last) {
4426 typedef typename ::std::iterator_traits<Iter>::value_type T;
4427 return internal::UnorderedElementsAreArrayMatcher<T>(
4428 internal::UnorderedMatcherRequire::ExactMatch, first, last);
4429}
4430
4431template <typename T>
4432inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4433 const T* pointer, size_t count) {
4434 return UnorderedElementsAreArray(pointer, pointer + count);
4435}
4436
4437template <typename T, size_t N>
4438inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4439 const T (&array)[N]) {
4440 return UnorderedElementsAreArray(array, N);
4441}
4442
4443template <typename Container>
4444inline internal::UnorderedElementsAreArrayMatcher<
4445 typename Container::value_type>
4446UnorderedElementsAreArray(const Container& container) {
4447 return UnorderedElementsAreArray(container.begin(), container.end());
4448}
4449
4450template <typename T>
4451inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4452 ::std::initializer_list<T> xs) {
4453 return UnorderedElementsAreArray(xs.begin(), xs.end());
4454}
4455
4456// _ is a matcher that matches anything of any type.
4457//
4458// This definition is fine as:
4459//
4460// 1. The C++ standard permits using the name _ in a namespace that
4461// is not the global namespace or ::std.
4462// 2. The AnythingMatcher class has no data member or constructor,
4463// so it's OK to create global variables of this type.
4464// 3. c-style has approved of using _ in this case.
4465const internal::AnythingMatcher _ = {};
4466// Creates a matcher that matches any value of the given type T.
4467template <typename T>
4468inline Matcher<T> A() {
4469 return _;
4470}
4471
4472// Creates a matcher that matches any value of the given type T.
4473template <typename T>
4474inline Matcher<T> An() {
4475 return _;
4476}
4477
4478template <typename T, typename M>
4479Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4480 const M& value, std::false_type /* convertible_to_matcher */,
4481 std::false_type /* convertible_to_T */) {
4482 return Eq(value);
4483}
4484
4485// Creates a polymorphic matcher that matches any NULL pointer.
4486inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() {
4487 return MakePolymorphicMatcher(impl: internal::IsNullMatcher());
4488}
4489
4490// Creates a polymorphic matcher that matches any non-NULL pointer.
4491// This is convenient as Not(NULL) doesn't compile (the compiler
4492// thinks that that expression is comparing a pointer with an integer).
4493inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() {
4494 return MakePolymorphicMatcher(impl: internal::NotNullMatcher());
4495}
4496
4497// Creates a polymorphic matcher that matches any argument that
4498// references variable x.
4499template <typename T>
4500inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
4501 return internal::RefMatcher<T&>(x);
4502}
4503
4504// Creates a polymorphic matcher that matches any NaN floating point.
4505inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4506 return MakePolymorphicMatcher(impl: internal::IsNanMatcher());
4507}
4508
4509// Creates a matcher that matches any double argument approximately
4510// equal to rhs, where two NANs are considered unequal.
4511inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4512 return internal::FloatingEqMatcher<double>(rhs, false);
4513}
4514
4515// Creates a matcher that matches any double argument approximately
4516// equal to rhs, including NaN values when rhs is NaN.
4517inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4518 return internal::FloatingEqMatcher<double>(rhs, true);
4519}
4520
4521// Creates a matcher that matches any double argument approximately equal to
4522// rhs, up to the specified max absolute error bound, where two NANs are
4523// considered unequal. The max absolute error bound must be non-negative.
4524inline internal::FloatingEqMatcher<double> DoubleNear(double rhs,
4525 double max_abs_error) {
4526 return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4527}
4528
4529// The DistanceFrom(target, get_distance, m) and DistanceFrom(target, m)
4530// matchers work on arbitrary types that have the "distance" concept. What they
4531// do:
4532//
4533// 1. compute the distance between the value and the target using
4534// get_distance(value, target) if get_distance is provided; otherwise compute
4535// the distance as abs(value - target).
4536// 2. match the distance against the user-provided matcher m; if the match
4537// succeeds, the DistanceFrom() match succeeds.
4538//
4539// Examples:
4540//
4541// // 0.5's distance from 0.6 should be <= 0.2.
4542// EXPECT_THAT(0.5, DistanceFrom(0.6, Le(0.2)));
4543//
4544// Vector2D v1(3.0, 4.0), v2(3.2, 6.0);
4545// // v1's distance from v2, as computed by EuclideanDistance(v1, v2),
4546// // should be >= 1.0.
4547// EXPECT_THAT(v1, DistanceFrom(v2, EuclideanDistance, Ge(1.0)));
4548
4549template <typename T, typename GetDistance, typename DistanceMatcher>
4550inline internal::DistanceFromMatcher<T, GetDistance, DistanceMatcher>
4551DistanceFrom(T target, GetDistance get_distance,
4552 DistanceMatcher distance_matcher) {
4553 return internal::DistanceFromMatcher<T, GetDistance, DistanceMatcher>(
4554 std::move(target), std::move(get_distance), std::move(distance_matcher));
4555}
4556
4557template <typename T, typename DistanceMatcher>
4558inline internal::DistanceFromMatcher<T, internal::DefaultGetDistance,
4559 DistanceMatcher>
4560DistanceFrom(T target, DistanceMatcher distance_matcher) {
4561 return DistanceFrom(std::move(target), internal::DefaultGetDistance(),
4562 std::move(distance_matcher));
4563}
4564
4565// Creates a matcher that matches any double argument approximately equal to
4566// rhs, up to the specified max absolute error bound, including NaN values when
4567// rhs is NaN. The max absolute error bound must be non-negative.
4568inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4569 double rhs, double max_abs_error) {
4570 return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4571}
4572
4573// Creates a matcher that matches any float argument approximately
4574// equal to rhs, where two NANs are considered unequal.
4575inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4576 return internal::FloatingEqMatcher<float>(rhs, false);
4577}
4578
4579// Creates a matcher that matches any float argument approximately
4580// equal to rhs, including NaN values when rhs is NaN.
4581inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4582 return internal::FloatingEqMatcher<float>(rhs, true);
4583}
4584
4585// Creates a matcher that matches any float argument approximately equal to
4586// rhs, up to the specified max absolute error bound, where two NANs are
4587// considered unequal. The max absolute error bound must be non-negative.
4588inline internal::FloatingEqMatcher<float> FloatNear(float rhs,
4589 float max_abs_error) {
4590 return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4591}
4592
4593// Creates a matcher that matches any float argument approximately equal to
4594// rhs, up to the specified max absolute error bound, including NaN values when
4595// rhs is NaN. The max absolute error bound must be non-negative.
4596inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4597 float rhs, float max_abs_error) {
4598 return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4599}
4600
4601// Creates a matcher that matches a pointer (raw or smart) that points
4602// to a value that matches inner_matcher.
4603template <typename InnerMatcher>
4604inline internal::PointeeMatcher<InnerMatcher> Pointee(
4605 const InnerMatcher& inner_matcher) {
4606 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4607}
4608
4609#if GTEST_HAS_RTTI
4610// Creates a matcher that matches a pointer or reference that matches
4611// inner_matcher when dynamic_cast<To> is applied.
4612// The result of dynamic_cast<To> is forwarded to the inner matcher.
4613// If To is a pointer and the cast fails, the inner matcher will receive NULL.
4614// If To is a reference and the cast fails, this matcher returns false
4615// immediately.
4616template <typename To>
4617inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>>
4618WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4619 return MakePolymorphicMatcher(
4620 internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4621}
4622#endif // GTEST_HAS_RTTI
4623
4624// Creates a matcher that matches an object whose given field matches
4625// 'matcher'. For example,
4626// Field(&Foo::number, Ge(5))
4627// matches a Foo object x if and only if x.number >= 5.
4628template <typename Class, typename FieldType, typename FieldMatcher>
4629inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4630 FieldType Class::* field, const FieldMatcher& matcher) {
4631 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4632 field, MatcherCast<const FieldType&>(matcher)));
4633 // The call to MatcherCast() is required for supporting inner
4634 // matchers of compatible types. For example, it allows
4635 // Field(&Foo::bar, m)
4636 // to compile where bar is an int32 and m is a matcher for int64.
4637}
4638
4639// Same as Field() but also takes the name of the field to provide better error
4640// messages.
4641template <typename Class, typename FieldType, typename FieldMatcher>
4642inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4643 const std::string& field_name, FieldType Class::* field,
4644 const FieldMatcher& matcher) {
4645 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4646 field_name, field, MatcherCast<const FieldType&>(matcher)));
4647}
4648
4649// Creates a matcher that matches an object whose given property
4650// matches 'matcher'. For example,
4651// Property(&Foo::str, StartsWith("hi"))
4652// matches a Foo object x if and only if x.str() starts with "hi".
4653//
4654// Warning: Don't use `Property()` against member functions that you do not
4655// own, because taking addresses of functions is fragile and generally not part
4656// of the contract of the function.
4657template <typename Class, typename PropertyType, typename PropertyMatcher>
4658inline PolymorphicMatcher<internal::PropertyMatcher<
4659 Class, PropertyType, PropertyType (Class::*)() const>>
4660Property(PropertyType (Class::*property)() const,
4661 const PropertyMatcher& matcher) {
4662 return MakePolymorphicMatcher(
4663 internal::PropertyMatcher<Class, PropertyType,
4664 PropertyType (Class::*)() const>(
4665 property, MatcherCast<const PropertyType&>(matcher)));
4666 // The call to MatcherCast() is required for supporting inner
4667 // matchers of compatible types. For example, it allows
4668 // Property(&Foo::bar, m)
4669 // to compile where bar() returns an int32 and m is a matcher for int64.
4670}
4671
4672// Same as Property() above, but also takes the name of the property to provide
4673// better error messages.
4674template <typename Class, typename PropertyType, typename PropertyMatcher>
4675inline PolymorphicMatcher<internal::PropertyMatcher<
4676 Class, PropertyType, PropertyType (Class::*)() const>>
4677Property(const std::string& property_name,
4678 PropertyType (Class::*property)() const,
4679 const PropertyMatcher& matcher) {
4680 return MakePolymorphicMatcher(
4681 internal::PropertyMatcher<Class, PropertyType,
4682 PropertyType (Class::*)() const>(
4683 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4684}
4685
4686// The same as above but for reference-qualified member functions.
4687template <typename Class, typename PropertyType, typename PropertyMatcher>
4688inline PolymorphicMatcher<internal::PropertyMatcher<
4689 Class, PropertyType, PropertyType (Class::*)() const&>>
4690Property(PropertyType (Class::*property)() const&,
4691 const PropertyMatcher& matcher) {
4692 return MakePolymorphicMatcher(
4693 internal::PropertyMatcher<Class, PropertyType,
4694 PropertyType (Class::*)() const&>(
4695 property, MatcherCast<const PropertyType&>(matcher)));
4696}
4697
4698// Three-argument form for reference-qualified member functions.
4699template <typename Class, typename PropertyType, typename PropertyMatcher>
4700inline PolymorphicMatcher<internal::PropertyMatcher<
4701 Class, PropertyType, PropertyType (Class::*)() const&>>
4702Property(const std::string& property_name,
4703 PropertyType (Class::*property)() const&,
4704 const PropertyMatcher& matcher) {
4705 return MakePolymorphicMatcher(
4706 internal::PropertyMatcher<Class, PropertyType,
4707 PropertyType (Class::*)() const&>(
4708 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4709}
4710
4711// Creates a matcher that matches an object if and only if the result of
4712// applying a callable to x matches 'matcher'. For example,
4713// ResultOf(f, StartsWith("hi"))
4714// matches a Foo object x if and only if f(x) starts with "hi".
4715// `callable` parameter can be a function, function pointer, or a functor. It is
4716// required to keep no state affecting the results of the calls on it and make
4717// no assumptions about how many calls will be made. Any state it keeps must be
4718// protected from the concurrent access.
4719template <typename Callable, typename InnerMatcher>
4720internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4721 Callable callable, InnerMatcher matcher) {
4722 return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable),
4723 std::move(matcher));
4724}
4725
4726// Same as ResultOf() above, but also takes a description of the `callable`
4727// result to provide better error messages.
4728template <typename Callable, typename InnerMatcher>
4729internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4730 const std::string& result_description, Callable callable,
4731 InnerMatcher matcher) {
4732 return internal::ResultOfMatcher<Callable, InnerMatcher>(
4733 result_description, std::move(callable), std::move(matcher));
4734}
4735
4736// String matchers.
4737
4738// Matches a string equal to str.
4739template <typename T = std::string>
4740PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq(
4741 const internal::StringLike<T>& str) {
4742 return MakePolymorphicMatcher(
4743 impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4744}
4745
4746// Matches a string not equal to str.
4747template <typename T = std::string>
4748PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe(
4749 const internal::StringLike<T>& str) {
4750 return MakePolymorphicMatcher(
4751 impl: internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4752}
4753
4754// Matches a string equal to str, ignoring case.
4755template <typename T = std::string>
4756PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq(
4757 const internal::StringLike<T>& str) {
4758 return MakePolymorphicMatcher(
4759 impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4760}
4761
4762// Matches a string not equal to str, ignoring case.
4763template <typename T = std::string>
4764PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe(
4765 const internal::StringLike<T>& str) {
4766 return MakePolymorphicMatcher(impl: internal::StrEqualityMatcher<std::string>(
4767 std::string(str), false, false));
4768}
4769
4770// Creates a matcher that matches any string, std::string, or C string
4771// that contains the given substring.
4772template <typename T = std::string>
4773PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr(
4774 const internal::StringLike<T>& substring) {
4775 return MakePolymorphicMatcher(
4776 impl: internal::HasSubstrMatcher<std::string>(std::string(substring)));
4777}
4778
4779// Matches a string that starts with 'prefix' (case-sensitive).
4780template <typename T = std::string>
4781PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith(
4782 const internal::StringLike<T>& prefix) {
4783 return MakePolymorphicMatcher(
4784 impl: internal::StartsWithMatcher<std::string>(std::string(prefix)));
4785}
4786
4787// Matches a string that ends with 'suffix' (case-sensitive).
4788template <typename T = std::string>
4789PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith(
4790 const internal::StringLike<T>& suffix) {
4791 return MakePolymorphicMatcher(
4792 impl: internal::EndsWithMatcher<std::string>(std::string(suffix)));
4793}
4794
4795#if GTEST_HAS_STD_WSTRING
4796// Wide string matchers.
4797
4798// Matches a string equal to str.
4799inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq(
4800 const std::wstring& str) {
4801 return MakePolymorphicMatcher(
4802 impl: internal::StrEqualityMatcher<std::wstring>(str, true, true));
4803}
4804
4805// Matches a string not equal to str.
4806inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe(
4807 const std::wstring& str) {
4808 return MakePolymorphicMatcher(
4809 impl: internal::StrEqualityMatcher<std::wstring>(str, false, true));
4810}
4811
4812// Matches a string equal to str, ignoring case.
4813inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq(
4814 const std::wstring& str) {
4815 return MakePolymorphicMatcher(
4816 impl: internal::StrEqualityMatcher<std::wstring>(str, true, false));
4817}
4818
4819// Matches a string not equal to str, ignoring case.
4820inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe(
4821 const std::wstring& str) {
4822 return MakePolymorphicMatcher(
4823 impl: internal::StrEqualityMatcher<std::wstring>(str, false, false));
4824}
4825
4826// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4827// that contains the given substring.
4828inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr(
4829 const std::wstring& substring) {
4830 return MakePolymorphicMatcher(
4831 impl: internal::HasSubstrMatcher<std::wstring>(substring));
4832}
4833
4834// Matches a string that starts with 'prefix' (case-sensitive).
4835inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith(
4836 const std::wstring& prefix) {
4837 return MakePolymorphicMatcher(
4838 impl: internal::StartsWithMatcher<std::wstring>(prefix));
4839}
4840
4841// Matches a string that ends with 'suffix' (case-sensitive).
4842inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith(
4843 const std::wstring& suffix) {
4844 return MakePolymorphicMatcher(
4845 impl: internal::EndsWithMatcher<std::wstring>(suffix));
4846}
4847
4848#endif // GTEST_HAS_STD_WSTRING
4849
4850// Creates a polymorphic matcher that matches a 2-tuple where the
4851// first field == the second field.
4852inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4853
4854// Creates a polymorphic matcher that matches a 2-tuple where the
4855// first field >= the second field.
4856inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4857
4858// Creates a polymorphic matcher that matches a 2-tuple where the
4859// first field > the second field.
4860inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4861
4862// Creates a polymorphic matcher that matches a 2-tuple where the
4863// first field <= the second field.
4864inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4865
4866// Creates a polymorphic matcher that matches a 2-tuple where the
4867// first field < the second field.
4868inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4869
4870// Creates a polymorphic matcher that matches a 2-tuple where the
4871// first field != the second field.
4872inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4873
4874// Creates a polymorphic matcher that matches a 2-tuple where
4875// FloatEq(first field) matches the second field.
4876inline internal::FloatingEq2Matcher<float> FloatEq() {
4877 return internal::FloatingEq2Matcher<float>();
4878}
4879
4880// Creates a polymorphic matcher that matches a 2-tuple where
4881// DoubleEq(first field) matches the second field.
4882inline internal::FloatingEq2Matcher<double> DoubleEq() {
4883 return internal::FloatingEq2Matcher<double>();
4884}
4885
4886// Creates a polymorphic matcher that matches a 2-tuple where
4887// FloatEq(first field) matches the second field with NaN equality.
4888inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4889 return internal::FloatingEq2Matcher<float>(true);
4890}
4891
4892// Creates a polymorphic matcher that matches a 2-tuple where
4893// DoubleEq(first field) matches the second field with NaN equality.
4894inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4895 return internal::FloatingEq2Matcher<double>(true);
4896}
4897
4898// Creates a polymorphic matcher that matches a 2-tuple where
4899// FloatNear(first field, max_abs_error) matches the second field.
4900inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4901 return internal::FloatingEq2Matcher<float>(max_abs_error);
4902}
4903
4904// Creates a polymorphic matcher that matches a 2-tuple where
4905// DoubleNear(first field, max_abs_error) matches the second field.
4906inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4907 return internal::FloatingEq2Matcher<double>(max_abs_error);
4908}
4909
4910// Creates a polymorphic matcher that matches a 2-tuple where
4911// FloatNear(first field, max_abs_error) matches the second field with NaN
4912// equality.
4913inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4914 float max_abs_error) {
4915 return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4916}
4917
4918// Creates a polymorphic matcher that matches a 2-tuple where
4919// DoubleNear(first field, max_abs_error) matches the second field with NaN
4920// equality.
4921inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4922 double max_abs_error) {
4923 return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4924}
4925
4926// Creates a matcher that matches any value of type T that m doesn't
4927// match.
4928template <typename InnerMatcher>
4929inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4930 return internal::NotMatcher<InnerMatcher>(m);
4931}
4932
4933// Returns a matcher that matches anything that satisfies the given
4934// predicate. The predicate can be any unary function or functor
4935// whose return type can be implicitly converted to bool.
4936template <typename Predicate>
4937inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly(
4938 Predicate pred) {
4939 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4940}
4941
4942// Returns a matcher that matches the container size. The container must
4943// support both size() and size_type which all STL-like containers provide.
4944// Note that the parameter 'size' can be a value of type size_type as well as
4945// matcher. For instance:
4946// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
4947// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
4948template <typename SizeMatcher>
4949inline internal::SizeIsMatcher<SizeMatcher> SizeIs(
4950 const SizeMatcher& size_matcher) {
4951 return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4952}
4953
4954// Returns a matcher that matches the distance between the container's begin()
4955// iterator and its end() iterator, i.e. the size of the container. This matcher
4956// can be used instead of SizeIs with containers such as std::forward_list which
4957// do not implement size(). The container must provide const_iterator (with
4958// valid iterator_traits), begin() and end().
4959template <typename DistanceMatcher>
4960inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(
4961 const DistanceMatcher& distance_matcher) {
4962 return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4963}
4964
4965// Returns a matcher that matches an equal container.
4966// This matcher behaves like Eq(), but in the event of mismatch lists the
4967// values that are included in one container but not the other. (Duplicate
4968// values and order differences are not explained.)
4969template <typename Container>
4970inline PolymorphicMatcher<
4971 internal::ContainerEqMatcher<typename std::remove_const<Container>::type>>
4972ContainerEq(const Container& rhs) {
4973 return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4974}
4975
4976// Returns a matcher that matches a container that, when sorted using
4977// the given comparator, matches container_matcher.
4978template <typename Comparator, typename ContainerMatcher>
4979inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(
4980 const Comparator& comparator, const ContainerMatcher& container_matcher) {
4981 return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4982 comparator, container_matcher);
4983}
4984
4985// Returns a matcher that matches a container that, when sorted using
4986// the < operator, matches container_matcher.
4987template <typename ContainerMatcher>
4988inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4989WhenSorted(const ContainerMatcher& container_matcher) {
4990 return internal::WhenSortedByMatcher<internal::LessComparator,
4991 ContainerMatcher>(
4992 internal::LessComparator(), container_matcher);
4993}
4994
4995// Matches an STL-style container or a native array that contains the
4996// same number of elements as in rhs, where its i-th element and rhs's
4997// i-th element (as a pair) satisfy the given pair matcher, for all i.
4998// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4999// T1&, const T2&> >, where T1 and T2 are the types of elements in the
5000// LHS container and the RHS container respectively.
5001template <typename TupleMatcher, typename Container>
5002inline internal::PointwiseMatcher<TupleMatcher,
5003 typename std::remove_const<Container>::type>
5004Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
5005 return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
5006 rhs);
5007}
5008
5009// Supports the Pointwise(m, {a, b, c}) syntax.
5010template <typename TupleMatcher, typename T>
5011inline internal::PointwiseMatcher<TupleMatcher,
5012 std::vector<std::remove_const_t<T>>>
5013Pointwise(const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
5014 return Pointwise(tuple_matcher, std::vector<std::remove_const_t<T>>(rhs));
5015}
5016
5017// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
5018// container or a native array that contains the same number of
5019// elements as in rhs, where in some permutation of the container, its
5020// i-th element and rhs's i-th element (as a pair) satisfy the given
5021// pair matcher, for all i. Tuple2Matcher must be able to be safely
5022// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
5023// the types of elements in the LHS container and the RHS container
5024// respectively.
5025//
5026// This is like Pointwise(pair_matcher, rhs), except that the element
5027// order doesn't matter.
5028template <typename Tuple2Matcher, typename RhsContainer>
5029inline internal::UnorderedElementsAreArrayMatcher<
5030 typename internal::BoundSecondMatcher<
5031 Tuple2Matcher,
5032 typename internal::StlContainerView<
5033 typename std::remove_const<RhsContainer>::type>::type::value_type>>
5034UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
5035 const RhsContainer& rhs_container) {
5036 // RhsView allows the same code to handle RhsContainer being a
5037 // STL-style container and it being a native C-style array.
5038 typedef typename internal::StlContainerView<RhsContainer> RhsView;
5039 typedef typename RhsView::type RhsStlContainer;
5040 typedef typename RhsStlContainer::value_type Second;
5041 const RhsStlContainer& rhs_stl_container =
5042 RhsView::ConstReference(rhs_container);
5043
5044 // Create a matcher for each element in rhs_container.
5045 ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers;
5046 for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end();
5047 ++it) {
5048 matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it));
5049 }
5050
5051 // Delegate the work to UnorderedElementsAreArray().
5052 return UnorderedElementsAreArray(matchers);
5053}
5054
5055// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
5056template <typename Tuple2Matcher, typename T>
5057inline internal::UnorderedElementsAreArrayMatcher<
5058 typename internal::BoundSecondMatcher<Tuple2Matcher, T>>
5059UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
5060 std::initializer_list<T> rhs) {
5061 return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
5062}
5063
5064// Matches an STL-style container or a native array that contains at
5065// least one element matching the given value or matcher.
5066//
5067// Examples:
5068// ::std::set<int> page_ids;
5069// page_ids.insert(3);
5070// page_ids.insert(1);
5071// EXPECT_THAT(page_ids, Contains(1));
5072// EXPECT_THAT(page_ids, Contains(Gt(2)));
5073// EXPECT_THAT(page_ids, Not(Contains(4))); // See below for Times(0)
5074//
5075// ::std::map<int, size_t> page_lengths;
5076// page_lengths[1] = 100;
5077// EXPECT_THAT(page_lengths,
5078// Contains(::std::pair<const int, size_t>(1, 100)));
5079//
5080// const char* user_ids[] = { "joe", "mike", "tom" };
5081// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
5082//
5083// The matcher supports a modifier `Times` that allows to check for arbitrary
5084// occurrences including testing for absence with Times(0).
5085//
5086// Examples:
5087// ::std::vector<int> ids;
5088// ids.insert(1);
5089// ids.insert(1);
5090// ids.insert(3);
5091// EXPECT_THAT(ids, Contains(1).Times(2)); // 1 occurs 2 times
5092// EXPECT_THAT(ids, Contains(2).Times(0)); // 2 is not present
5093// EXPECT_THAT(ids, Contains(3).Times(Ge(1))); // 3 occurs at least once
5094
5095template <typename M>
5096inline internal::ContainsMatcher<M> Contains(M matcher) {
5097 return internal::ContainsMatcher<M>(matcher);
5098}
5099
5100// IsSupersetOf(iterator_first, iterator_last)
5101// IsSupersetOf(pointer, count)
5102// IsSupersetOf(array)
5103// IsSupersetOf(container)
5104// IsSupersetOf({e1, e2, ..., en})
5105//
5106// IsSupersetOf() verifies that a surjective partial mapping onto a collection
5107// of matchers exists. In other words, a container matches
5108// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
5109// {y1, ..., yn} of some of the container's elements where y1 matches e1,
5110// ..., and yn matches en. Obviously, the size of the container must be >= n
5111// in order to have a match. Examples:
5112//
5113// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
5114// 1 matches Ne(0).
5115// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
5116// both Eq(1) and Lt(2). The reason is that different matchers must be used
5117// for elements in different slots of the container.
5118// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
5119// Eq(1) and (the second) 1 matches Lt(2).
5120// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
5121// Gt(1) and 3 matches (the second) Gt(1).
5122//
5123// The matchers can be specified as an array, a pointer and count, a container,
5124// an initializer list, or an STL iterator range. In each of these cases, the
5125// underlying matchers can be either values or matchers.
5126
5127template <typename Iter>
5128inline internal::UnorderedElementsAreArrayMatcher<
5129 typename ::std::iterator_traits<Iter>::value_type>
5130IsSupersetOf(Iter first, Iter last) {
5131 typedef typename ::std::iterator_traits<Iter>::value_type T;
5132 return internal::UnorderedElementsAreArrayMatcher<T>(
5133 internal::UnorderedMatcherRequire::Superset, first, last);
5134}
5135
5136template <typename T>
5137inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
5138 const T* pointer, size_t count) {
5139 return IsSupersetOf(pointer, pointer + count);
5140}
5141
5142template <typename T, size_t N>
5143inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
5144 const T (&array)[N]) {
5145 return IsSupersetOf(array, N);
5146}
5147
5148template <typename Container>
5149inline internal::UnorderedElementsAreArrayMatcher<
5150 typename Container::value_type>
5151IsSupersetOf(const Container& container) {
5152 return IsSupersetOf(container.begin(), container.end());
5153}
5154
5155template <typename T>
5156inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
5157 ::std::initializer_list<T> xs) {
5158 return IsSupersetOf(xs.begin(), xs.end());
5159}
5160
5161// IsSubsetOf(iterator_first, iterator_last)
5162// IsSubsetOf(pointer, count)
5163// IsSubsetOf(array)
5164// IsSubsetOf(container)
5165// IsSubsetOf({e1, e2, ..., en})
5166//
5167// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
5168// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
5169// only if there is a subset of matchers {m1, ..., mk} which would match the
5170// container using UnorderedElementsAre. Obviously, the size of the container
5171// must be <= n in order to have a match. Examples:
5172//
5173// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
5174// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
5175// matches Lt(0).
5176// - {1, 2} doesn't match IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
5177// match Gt(0). The reason is that different matchers must be used for
5178// elements in different slots of the container.
5179//
5180// The matchers can be specified as an array, a pointer and count, a container,
5181// an initializer list, or an STL iterator range. In each of these cases, the
5182// underlying matchers can be either values or matchers.
5183
5184template <typename Iter>
5185inline internal::UnorderedElementsAreArrayMatcher<
5186 typename ::std::iterator_traits<Iter>::value_type>
5187IsSubsetOf(Iter first, Iter last) {
5188 typedef typename ::std::iterator_traits<Iter>::value_type T;
5189 return internal::UnorderedElementsAreArrayMatcher<T>(
5190 internal::UnorderedMatcherRequire::Subset, first, last);
5191}
5192
5193template <typename T>
5194inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
5195 const T* pointer, size_t count) {
5196 return IsSubsetOf(pointer, pointer + count);
5197}
5198
5199template <typename T, size_t N>
5200inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
5201 const T (&array)[N]) {
5202 return IsSubsetOf(array, N);
5203}
5204
5205template <typename Container>
5206inline internal::UnorderedElementsAreArrayMatcher<
5207 typename Container::value_type>
5208IsSubsetOf(const Container& container) {
5209 return IsSubsetOf(container.begin(), container.end());
5210}
5211
5212template <typename T>
5213inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
5214 ::std::initializer_list<T> xs) {
5215 return IsSubsetOf(xs.begin(), xs.end());
5216}
5217
5218// Matches an STL-style container or a native array that contains only
5219// elements matching the given value or matcher.
5220//
5221// Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only
5222// the messages are different.
5223//
5224// Examples:
5225// ::std::set<int> page_ids;
5226// // Each(m) matches an empty container, regardless of what m is.
5227// EXPECT_THAT(page_ids, Each(Eq(1)));
5228// EXPECT_THAT(page_ids, Each(Eq(77)));
5229//
5230// page_ids.insert(3);
5231// EXPECT_THAT(page_ids, Each(Gt(0)));
5232// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
5233// page_ids.insert(1);
5234// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
5235//
5236// ::std::map<int, size_t> page_lengths;
5237// page_lengths[1] = 100;
5238// page_lengths[2] = 200;
5239// page_lengths[3] = 300;
5240// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
5241// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
5242//
5243// const char* user_ids[] = { "joe", "mike", "tom" };
5244// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
5245template <typename M>
5246inline internal::EachMatcher<M> Each(M matcher) {
5247 return internal::EachMatcher<M>(matcher);
5248}
5249
5250// Key(inner_matcher) matches an std::pair whose 'first' field matches
5251// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
5252// std::map that contains at least one element whose key is >= 5.
5253template <typename M>
5254inline internal::KeyMatcher<M> Key(M inner_matcher) {
5255 return internal::KeyMatcher<M>(inner_matcher);
5256}
5257
5258// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
5259// matches first_matcher and whose 'second' field matches second_matcher. For
5260// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
5261// to match a std::map<int, string> that contains exactly one element whose key
5262// is >= 5 and whose value equals "foo".
5263template <typename FirstMatcher, typename SecondMatcher>
5264inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(
5265 FirstMatcher first_matcher, SecondMatcher second_matcher) {
5266 return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher,
5267 second_matcher);
5268}
5269
5270namespace no_adl {
5271// Conditional() creates a matcher that conditionally uses either the first or
5272// second matcher provided. For example, we could create an `equal if, and only
5273// if' matcher using the Conditional wrapper as follows:
5274//
5275// EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected)));
5276template <typename MatcherTrue, typename MatcherFalse>
5277internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional(
5278 bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) {
5279 return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>(
5280 condition, std::move(matcher_true), std::move(matcher_false));
5281}
5282
5283// FieldsAre(matchers...) matches piecewise the fields of compatible structs.
5284// These include those that support `get<I>(obj)`, and when structured bindings
5285// are enabled any class that supports them.
5286// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
5287template <typename... M>
5288internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
5289 M&&... matchers) {
5290 return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
5291 std::forward<M>(matchers)...);
5292}
5293
5294// Creates a matcher that matches a pointer (raw or smart) that matches
5295// inner_matcher.
5296template <typename InnerMatcher>
5297inline internal::PointerMatcher<InnerMatcher> Pointer(
5298 const InnerMatcher& inner_matcher) {
5299 return internal::PointerMatcher<InnerMatcher>(inner_matcher);
5300}
5301
5302// Creates a matcher that matches an object that has an address that matches
5303// inner_matcher.
5304template <typename InnerMatcher>
5305inline internal::AddressMatcher<InnerMatcher> Address(
5306 const InnerMatcher& inner_matcher) {
5307 return internal::AddressMatcher<InnerMatcher>(inner_matcher);
5308}
5309
5310// Matches a base64 escaped string, when the unescaped string matches the
5311// internal matcher.
5312template <typename MatcherType>
5313internal::WhenBase64UnescapedMatcher WhenBase64Unescaped(
5314 const MatcherType& internal_matcher) {
5315 return internal::WhenBase64UnescapedMatcher(internal_matcher);
5316}
5317} // namespace no_adl
5318
5319// Returns a predicate that is satisfied by anything that matches the
5320// given matcher.
5321template <typename M>
5322inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5323 return internal::MatcherAsPredicate<M>(matcher);
5324}
5325
5326// Returns true if and only if the value matches the matcher.
5327template <typename T, typename M>
5328inline bool Value(const T& value, M matcher) {
5329 return testing::Matches(matcher)(value);
5330}
5331
5332// Matches the value against the given matcher and explains the match
5333// result to listener.
5334template <typename T, typename M>
5335inline bool ExplainMatchResult(M matcher, const T& value,
5336 MatchResultListener* listener) {
5337 return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5338}
5339
5340// Returns a string representation of the given matcher. Useful for description
5341// strings of matchers defined using MATCHER_P* macros that accept matchers as
5342// their arguments. For example:
5343//
5344// MATCHER_P(XAndYThat, matcher,
5345// "X that " + DescribeMatcher<int>(matcher, negation) +
5346// (negation ? " or" : " and") + " Y that " +
5347// DescribeMatcher<double>(matcher, negation)) {
5348// return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5349// ExplainMatchResult(matcher, arg.y(), result_listener);
5350// }
5351template <typename T, typename M>
5352std::string DescribeMatcher(const M& matcher, bool negation = false) {
5353 ::std::stringstream ss;
5354 Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5355 if (negation) {
5356 monomorphic_matcher.DescribeNegationTo(&ss);
5357 } else {
5358 monomorphic_matcher.DescribeTo(&ss);
5359 }
5360 return ss.str();
5361}
5362
5363template <typename... Args>
5364internal::ElementsAreMatcher<
5365 std::tuple<typename std::decay<const Args&>::type...>>
5366ElementsAre(const Args&... matchers) {
5367 return internal::ElementsAreMatcher<
5368 std::tuple<typename std::decay<const Args&>::type...>>(
5369 std::make_tuple(matchers...));
5370}
5371
5372template <typename... Args>
5373internal::UnorderedElementsAreMatcher<
5374 std::tuple<typename std::decay<const Args&>::type...>>
5375UnorderedElementsAre(const Args&... matchers) {
5376 return internal::UnorderedElementsAreMatcher<
5377 std::tuple<typename std::decay<const Args&>::type...>>(
5378 std::make_tuple(matchers...));
5379}
5380
5381// Define variadic matcher versions.
5382template <typename... Args>
5383internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5384 const Args&... matchers) {
5385 return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5386 matchers...);
5387}
5388
5389template <typename... Args>
5390internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5391 const Args&... matchers) {
5392 return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5393 matchers...);
5394}
5395
5396// AnyOfArray(array)
5397// AnyOfArray(pointer, count)
5398// AnyOfArray(container)
5399// AnyOfArray({ e1, e2, ..., en })
5400// AnyOfArray(iterator_first, iterator_last)
5401//
5402// AnyOfArray() verifies whether a given value matches any member of a
5403// collection of matchers.
5404//
5405// AllOfArray(array)
5406// AllOfArray(pointer, count)
5407// AllOfArray(container)
5408// AllOfArray({ e1, e2, ..., en })
5409// AllOfArray(iterator_first, iterator_last)
5410//
5411// AllOfArray() verifies whether a given value matches all members of a
5412// collection of matchers.
5413//
5414// The matchers can be specified as an array, a pointer and count, a container,
5415// an initializer list, or an STL iterator range. In each of these cases, the
5416// underlying matchers can be either values or matchers.
5417
5418template <typename Iter>
5419inline internal::AnyOfArrayMatcher<
5420 typename ::std::iterator_traits<Iter>::value_type>
5421AnyOfArray(Iter first, Iter last) {
5422 return internal::AnyOfArrayMatcher<
5423 typename ::std::iterator_traits<Iter>::value_type>(first, last);
5424}
5425
5426template <typename Iter>
5427inline internal::AllOfArrayMatcher<
5428 typename ::std::iterator_traits<Iter>::value_type>
5429AllOfArray(Iter first, Iter last) {
5430 return internal::AllOfArrayMatcher<
5431 typename ::std::iterator_traits<Iter>::value_type>(first, last);
5432}
5433
5434template <typename T>
5435inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
5436 return AnyOfArray(ptr, ptr + count);
5437}
5438
5439template <typename T>
5440inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
5441 return AllOfArray(ptr, ptr + count);
5442}
5443
5444template <typename T, size_t N>
5445inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
5446 return AnyOfArray(array, N);
5447}
5448
5449template <typename T, size_t N>
5450inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
5451 return AllOfArray(array, N);
5452}
5453
5454template <typename Container>
5455inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
5456 const Container& container) {
5457 return AnyOfArray(container.begin(), container.end());
5458}
5459
5460template <typename Container>
5461inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
5462 const Container& container) {
5463 return AllOfArray(container.begin(), container.end());
5464}
5465
5466template <typename T>
5467inline internal::AnyOfArrayMatcher<T> AnyOfArray(
5468 ::std::initializer_list<T> xs) {
5469 return AnyOfArray(xs.begin(), xs.end());
5470}
5471
5472template <typename T>
5473inline internal::AllOfArrayMatcher<T> AllOfArray(
5474 ::std::initializer_list<T> xs) {
5475 return AllOfArray(xs.begin(), xs.end());
5476}
5477
5478// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5479// fields of it matches a_matcher. C++ doesn't support default
5480// arguments for function templates, so we have to overload it.
5481template <size_t... k, typename InnerMatcher>
5482internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5483 InnerMatcher&& matcher) {
5484 return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5485 std::forward<InnerMatcher>(matcher));
5486}
5487
5488// AllArgs(m) is a synonym of m. This is useful in
5489//
5490// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5491//
5492// which is easier to read than
5493//
5494// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5495template <typename InnerMatcher>
5496inline InnerMatcher AllArgs(const InnerMatcher& matcher) {
5497 return matcher;
5498}
5499
5500// Returns a matcher that matches the value of an optional<> type variable.
5501// The matcher implementation only uses '!arg' (or 'arg.has_value()' if '!arg`
5502// isn't a valid expression) and requires that the optional<> type has a
5503// 'value_type' member type and that '*arg' is of type 'value_type' and is
5504// printable using 'PrintToString'. It is compatible with
5505// std::optional/std::experimental::optional.
5506// Note that to compare an optional type variable against nullopt you should
5507// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5508// optional value contains an optional itself.
5509template <typename ValueMatcher>
5510inline internal::OptionalMatcher<ValueMatcher> Optional(
5511 const ValueMatcher& value_matcher) {
5512 return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5513}
5514
5515// Returns a matcher that matches the value of a absl::any type variable.
5516template <typename T>
5517PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith(
5518 const Matcher<const T&>& matcher) {
5519 return MakePolymorphicMatcher(
5520 internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5521}
5522
5523// Returns a matcher that matches the value of a variant<> type variable.
5524// The matcher implementation uses ADL to find the holds_alternative and get
5525// functions.
5526// It is compatible with std::variant.
5527template <typename T>
5528PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith(
5529 const Matcher<const T&>& matcher) {
5530 return MakePolymorphicMatcher(
5531 internal::variant_matcher::VariantMatcher<T>(matcher));
5532}
5533
5534#if GTEST_HAS_EXCEPTIONS
5535
5536// Anything inside the `internal` namespace is internal to the implementation
5537// and must not be used in user code!
5538namespace internal {
5539
5540class WithWhatMatcherImpl {
5541 public:
5542 WithWhatMatcherImpl(Matcher<std::string> matcher)
5543 : matcher_(std::move(matcher)) {}
5544
5545 void DescribeTo(std::ostream* os) const {
5546 *os << "contains .what() that ";
5547 matcher_.DescribeTo(os);
5548 }
5549
5550 void DescribeNegationTo(std::ostream* os) const {
5551 *os << "contains .what() that does not ";
5552 matcher_.DescribeTo(os);
5553 }
5554
5555 template <typename Err>
5556 bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5557 *listener << "which contains .what() (of value = " << err.what()
5558 << ") that ";
5559 return matcher_.MatchAndExplain(err.what(), listener);
5560 }
5561
5562 private:
5563 const Matcher<std::string> matcher_;
5564};
5565
5566inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5567 Matcher<std::string> m) {
5568 return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5569}
5570
5571template <typename Err>
5572class ExceptionMatcherImpl {
5573 class NeverThrown {
5574 public:
5575 const char* what() const noexcept {
5576 return "this exception should never be thrown";
5577 }
5578 };
5579
5580 // If the matchee raises an exception of a wrong type, we'd like to
5581 // catch it and print its message and type. To do that, we add an additional
5582 // catch clause:
5583 //
5584 // try { ... }
5585 // catch (const Err&) { /* an expected exception */ }
5586 // catch (const std::exception&) { /* exception of a wrong type */ }
5587 //
5588 // However, if the `Err` itself is `std::exception`, we'd end up with two
5589 // identical `catch` clauses:
5590 //
5591 // try { ... }
5592 // catch (const std::exception&) { /* an expected exception */ }
5593 // catch (const std::exception&) { /* exception of a wrong type */ }
5594 //
5595 // This can cause a warning or an error in some compilers. To resolve
5596 // the issue, we use a fake error type whenever `Err` is `std::exception`:
5597 //
5598 // try { ... }
5599 // catch (const std::exception&) { /* an expected exception */ }
5600 // catch (const NeverThrown&) { /* exception of a wrong type */ }
5601 using DefaultExceptionType = typename std::conditional<
5602 std::is_same<typename std::remove_cv<
5603 typename std::remove_reference<Err>::type>::type,
5604 std::exception>::value,
5605 const NeverThrown&, const std::exception&>::type;
5606
5607 public:
5608 ExceptionMatcherImpl(Matcher<const Err&> matcher)
5609 : matcher_(std::move(matcher)) {}
5610
5611 void DescribeTo(std::ostream* os) const {
5612 *os << "throws an exception which is a " << GetTypeName<Err>();
5613 *os << " which ";
5614 matcher_.DescribeTo(os);
5615 }
5616
5617 void DescribeNegationTo(std::ostream* os) const {
5618 *os << "throws an exception which is not a " << GetTypeName<Err>();
5619 *os << " which ";
5620 matcher_.DescribeNegationTo(os);
5621 }
5622
5623 template <typename T>
5624 bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5625 try {
5626 (void)(std::forward<T>(x)());
5627 } catch (const Err& err) {
5628 *listener << "throws an exception which is a " << GetTypeName<Err>();
5629 *listener << " ";
5630 return matcher_.MatchAndExplain(err, listener);
5631 } catch (DefaultExceptionType err) {
5632#if GTEST_HAS_RTTI
5633 *listener << "throws an exception of type " << GetTypeName(typeid(err));
5634 *listener << " ";
5635#else
5636 *listener << "throws an std::exception-derived type ";
5637#endif
5638 *listener << "with description \"" << err.what() << "\"";
5639 return false;
5640 } catch (...) {
5641 *listener << "throws an exception of an unknown type";
5642 return false;
5643 }
5644
5645 *listener << "does not throw any exception";
5646 return false;
5647 }
5648
5649 private:
5650 const Matcher<const Err&> matcher_;
5651};
5652
5653} // namespace internal
5654
5655// Throws()
5656// Throws(exceptionMatcher)
5657// ThrowsMessage(messageMatcher)
5658//
5659// This matcher accepts a callable and verifies that when invoked, it throws
5660// an exception with the given type and properties.
5661//
5662// Examples:
5663//
5664// EXPECT_THAT(
5665// []() { throw std::runtime_error("message"); },
5666// Throws<std::runtime_error>());
5667//
5668// EXPECT_THAT(
5669// []() { throw std::runtime_error("message"); },
5670// ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5671//
5672// EXPECT_THAT(
5673// []() { throw std::runtime_error("message"); },
5674// Throws<std::runtime_error>(
5675// Property(&std::runtime_error::what, HasSubstr("message"))));
5676
5677template <typename Err>
5678PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5679 return MakePolymorphicMatcher(
5680 internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5681}
5682
5683template <typename Err, typename ExceptionMatcher>
5684PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5685 const ExceptionMatcher& exception_matcher) {
5686 // Using matcher cast allows users to pass a matcher of a more broad type.
5687 // For example user may want to pass Matcher<std::exception>
5688 // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5689 return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5690 SafeMatcherCast<const Err&>(exception_matcher)));
5691}
5692
5693template <typename Err, typename MessageMatcher>
5694PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5695 MessageMatcher&& message_matcher) {
5696 static_assert(std::is_base_of<std::exception, Err>::value,
5697 "expected an std::exception-derived type");
5698 return Throws<Err>(internal::WithWhat(
5699 MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5700}
5701
5702#endif // GTEST_HAS_EXCEPTIONS
5703
5704// These macros allow using matchers to check values in Google Test
5705// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5706// succeed if and only if the value matches the matcher. If the assertion
5707// fails, the value and the description of the matcher will be printed.
5708#define ASSERT_THAT(value, matcher) \
5709 ASSERT_PRED_FORMAT1( \
5710 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5711#define EXPECT_THAT(value, matcher) \
5712 EXPECT_PRED_FORMAT1( \
5713 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5714
5715// MATCHER* macros itself are listed below.
5716#define MATCHER(name, description) \
5717 class name##Matcher \
5718 : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
5719 public: \
5720 template <typename arg_type> \
5721 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5722 public: \
5723 gmock_Impl() {} \
5724 bool MatchAndExplain( \
5725 const arg_type& arg, \
5726 ::testing::MatchResultListener* result_listener) const override; \
5727 void DescribeTo(::std::ostream* gmock_os) const override { \
5728 *gmock_os << FormatDescription(false); \
5729 } \
5730 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5731 *gmock_os << FormatDescription(true); \
5732 } \
5733 \
5734 private: \
5735 ::std::string FormatDescription(bool negation) const { \
5736 /* NOLINTNEXTLINE readability-redundant-string-init */ \
5737 ::std::string gmock_description = (description); \
5738 if (!gmock_description.empty()) { \
5739 return gmock_description; \
5740 } \
5741 return ::testing::internal::FormatMatcherDescription(negation, #name, \
5742 {}, {}); \
5743 } \
5744 }; \
5745 }; \
5746 inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH() \
5747 GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function") \
5748 GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function") \
5749 name GMOCK_INTERNAL_WARNING_POP()() { \
5750 return {}; \
5751 } \
5752 template <typename arg_type> \
5753 bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
5754 const arg_type& arg, \
5755 [[maybe_unused]] ::testing::MatchResultListener* result_listener) const
5756
5757#define MATCHER_P(name, p0, description) \
5758 GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0))
5759#define MATCHER_P2(name, p0, p1, description) \
5760 GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \
5761 (p0, p1))
5762#define MATCHER_P3(name, p0, p1, p2, description) \
5763 GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \
5764 (p0, p1, p2))
5765#define MATCHER_P4(name, p0, p1, p2, p3, description) \
5766 GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \
5767 (#p0, #p1, #p2, #p3), (p0, p1, p2, p3))
5768#define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
5769 GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5770 (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4))
5771#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5772 GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
5773 (#p0, #p1, #p2, #p3, #p4, #p5), \
5774 (p0, p1, p2, p3, p4, p5))
5775#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5776 GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
5777 (#p0, #p1, #p2, #p3, #p4, #p5, #p6), \
5778 (p0, p1, p2, p3, p4, p5, p6))
5779#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5780 GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
5781 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7), \
5782 (p0, p1, p2, p3, p4, p5, p6, p7))
5783#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5784 GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
5785 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8), \
5786 (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5787#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5788 GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
5789 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9), \
5790 (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5791
5792#define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args) \
5793 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5794 class full_name : public ::testing::internal::MatcherBaseImpl< \
5795 full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5796 public: \
5797 using full_name::MatcherBaseImpl::MatcherBaseImpl; \
5798 template <typename arg_type> \
5799 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5800 public: \
5801 explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
5802 : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
5803 bool MatchAndExplain( \
5804 const arg_type& arg, \
5805 ::testing::MatchResultListener* result_listener) const override; \
5806 void DescribeTo(::std::ostream* gmock_os) const override { \
5807 *gmock_os << FormatDescription(false); \
5808 } \
5809 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5810 *gmock_os << FormatDescription(true); \
5811 } \
5812 GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5813 \
5814 private: \
5815 ::std::string FormatDescription(bool negation) const { \
5816 ::std::string gmock_description; \
5817 gmock_description = (description); \
5818 if (!gmock_description.empty()) { \
5819 return gmock_description; \
5820 } \
5821 return ::testing::internal::FormatMatcherDescription( \
5822 negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)}, \
5823 ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
5824 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5825 GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
5826 } \
5827 }; \
5828 }; \
5829 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5830 inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
5831 GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
5832 return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5833 GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
5834 } \
5835 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5836 template <typename arg_type> \
5837 bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>:: \
5838 gmock_Impl<arg_type>::MatchAndExplain( \
5839 const arg_type& arg, \
5840 [[maybe_unused]] ::testing::MatchResultListener* result_listener) \
5841 const
5842
5843#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5844 GMOCK_PP_TAIL( \
5845 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5846#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5847 , typename arg##_type
5848
5849#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5850 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5851#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5852 , arg##_type
5853
5854#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5855 GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
5856 GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5857#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5858 , arg##_type gmock_p##i
5859
5860#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5861 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5862#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5863 , arg(::std::forward<arg##_type>(gmock_p##i))
5864
5865#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5866 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5867#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5868 const arg##_type arg;
5869
5870#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5871 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5872#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5873
5874#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5875 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5876#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg) \
5877 , ::std::forward<arg##_type>(gmock_p##i)
5878
5879// To prevent ADL on certain functions we put them on a separate namespace.
5880using namespace no_adl; // NOLINT
5881
5882} // namespace testing
5883
5884GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
5885
5886// Include any custom callback matchers added by the local installation.
5887// We must include this header at the end to make sure it can use the
5888// declarations from this file.
5889#include "gmock/internal/custom/gmock-matchers.h"
5890
5891#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5892