1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | // Google Mock - a framework for writing C++ mock classes. |
31 | // |
32 | // The MATCHER* family of macros can be used in a namespace scope to |
33 | // define custom matchers easily. |
34 | // |
35 | // Basic Usage |
36 | // =========== |
37 | // |
38 | // The syntax |
39 | // |
40 | // MATCHER(name, description_string) { statements; } |
41 | // |
42 | // defines a matcher with the given name that executes the statements, |
43 | // which must return a bool to indicate if the match succeeds. Inside |
44 | // the statements, you can refer to the value being matched by 'arg', |
45 | // and refer to its type by 'arg_type'. |
46 | // |
47 | // The description string documents what the matcher does, and is used |
48 | // to generate the failure message when the match fails. Since a |
49 | // MATCHER() is usually defined in a header file shared by multiple |
50 | // C++ source files, we require the description to be a C-string |
51 | // literal to avoid possible side effects. It can be empty, in which |
52 | // case we'll use the sequence of words in the matcher name as the |
53 | // description. |
54 | // |
55 | // For example: |
56 | // |
57 | // MATCHER(IsEven, "") { return (arg % 2) == 0; } |
58 | // |
59 | // allows you to write |
60 | // |
61 | // // Expects mock_foo.Bar(n) to be called where n is even. |
62 | // EXPECT_CALL(mock_foo, Bar(IsEven())); |
63 | // |
64 | // or, |
65 | // |
66 | // // Verifies that the value of some_expression is even. |
67 | // EXPECT_THAT(some_expression, IsEven()); |
68 | // |
69 | // If the above assertion fails, it will print something like: |
70 | // |
71 | // Value of: some_expression |
72 | // Expected: is even |
73 | // Actual: 7 |
74 | // |
75 | // where the description "is even" is automatically calculated from the |
76 | // matcher name IsEven. |
77 | // |
78 | // Argument Type |
79 | // ============= |
80 | // |
81 | // Note that the type of the value being matched (arg_type) is |
82 | // determined by the context in which you use the matcher and is |
83 | // supplied to you by the compiler, so you don't need to worry about |
84 | // declaring it (nor can you). This allows the matcher to be |
85 | // polymorphic. For example, IsEven() can be used to match any type |
86 | // where the value of "(arg % 2) == 0" can be implicitly converted to |
87 | // a bool. In the "Bar(IsEven())" example above, if method Bar() |
88 | // takes an int, 'arg_type' will be int; if it takes an unsigned long, |
89 | // 'arg_type' will be unsigned long; and so on. |
90 | // |
91 | // Parameterizing Matchers |
92 | // ======================= |
93 | // |
94 | // Sometimes you'll want to parameterize the matcher. For that you |
95 | // can use another macro: |
96 | // |
97 | // MATCHER_P(name, param_name, description_string) { statements; } |
98 | // |
99 | // For example: |
100 | // |
101 | // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } |
102 | // |
103 | // will allow you to write: |
104 | // |
105 | // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); |
106 | // |
107 | // which may lead to this message (assuming n is 10): |
108 | // |
109 | // Value of: Blah("a") |
110 | // Expected: has absolute value 10 |
111 | // Actual: -9 |
112 | // |
113 | // Note that both the matcher description and its parameter are |
114 | // printed, making the message human-friendly. |
115 | // |
116 | // In the matcher definition body, you can write 'foo_type' to |
117 | // reference the type of a parameter named 'foo'. For example, in the |
118 | // body of MATCHER_P(HasAbsoluteValue, value) above, you can write |
119 | // 'value_type' to refer to the type of 'value'. |
120 | // |
121 | // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to |
122 | // support multi-parameter matchers. |
123 | // |
124 | // Describing Parameterized Matchers |
125 | // ================================= |
126 | // |
127 | // The last argument to MATCHER*() is a string-typed expression. The |
128 | // expression can reference all of the matcher's parameters and a |
129 | // special bool-typed variable named 'negation'. When 'negation' is |
130 | // false, the expression should evaluate to the matcher's description; |
131 | // otherwise it should evaluate to the description of the negation of |
132 | // the matcher. For example, |
133 | // |
134 | // using testing::PrintToString; |
135 | // |
136 | // MATCHER_P2(InClosedRange, low, hi, |
137 | // std::string(negation ? "is not" : "is") + " in range [" + |
138 | // PrintToString(low) + ", " + PrintToString(hi) + "]") { |
139 | // return low <= arg && arg <= hi; |
140 | // } |
141 | // ... |
142 | // EXPECT_THAT(3, InClosedRange(4, 6)); |
143 | // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
144 | // |
145 | // would generate two failures that contain the text: |
146 | // |
147 | // Expected: is in range [4, 6] |
148 | // ... |
149 | // Expected: is not in range [2, 4] |
150 | // |
151 | // If you specify "" as the description, the failure message will |
152 | // contain the sequence of words in the matcher name followed by the |
153 | // parameter values printed as a tuple. For example, |
154 | // |
155 | // MATCHER_P2(InClosedRange, low, hi, "") { ... } |
156 | // ... |
157 | // EXPECT_THAT(3, InClosedRange(4, 6)); |
158 | // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
159 | // |
160 | // would generate two failures that contain the text: |
161 | // |
162 | // Expected: in closed range (4, 6) |
163 | // ... |
164 | // Expected: not (in closed range (2, 4)) |
165 | // |
166 | // Types of Matcher Parameters |
167 | // =========================== |
168 | // |
169 | // For the purpose of typing, you can view |
170 | // |
171 | // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } |
172 | // |
173 | // as shorthand for |
174 | // |
175 | // template <typename p1_type, ..., typename pk_type> |
176 | // FooMatcherPk<p1_type, ..., pk_type> |
177 | // Foo(p1_type p1, ..., pk_type pk) { ... } |
178 | // |
179 | // When you write Foo(v1, ..., vk), the compiler infers the types of |
180 | // the parameters v1, ..., and vk for you. If you are not happy with |
181 | // the result of the type inference, you can specify the types by |
182 | // explicitly instantiating the template, as in Foo<long, bool>(5, |
183 | // false). As said earlier, you don't get to (or need to) specify |
184 | // 'arg_type' as that's determined by the context in which the matcher |
185 | // is used. You can assign the result of expression Foo(p1, ..., pk) |
186 | // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This |
187 | // can be useful when composing matchers. |
188 | // |
189 | // While you can instantiate a matcher template with reference types, |
190 | // passing the parameters by pointer usually makes your code more |
191 | // readable. If, however, you still want to pass a parameter by |
192 | // reference, be aware that in the failure message generated by the |
193 | // matcher you will see the value of the referenced object but not its |
194 | // address. |
195 | // |
196 | // Explaining Match Results |
197 | // ======================== |
198 | // |
199 | // Sometimes the matcher description alone isn't enough to explain why |
200 | // the match has failed or succeeded. For example, when expecting a |
201 | // long string, it can be very helpful to also print the diff between |
202 | // the expected string and the actual one. To achieve that, you can |
203 | // optionally stream additional information to a special variable |
204 | // named result_listener, whose type is a pointer to class |
205 | // MatchResultListener: |
206 | // |
207 | // MATCHER_P(EqualsLongString, str, "") { |
208 | // if (arg == str) return true; |
209 | // |
210 | // *result_listener << "the difference: " |
211 | /// << DiffStrings(str, arg); |
212 | // return false; |
213 | // } |
214 | // |
215 | // Overloading Matchers |
216 | // ==================== |
217 | // |
218 | // You can overload matchers with different numbers of parameters: |
219 | // |
220 | // MATCHER_P(Blah, a, description_string1) { ... } |
221 | // MATCHER_P2(Blah, a, b, description_string2) { ... } |
222 | // |
223 | // Caveats |
224 | // ======= |
225 | // |
226 | // When defining a new matcher, you should also consider implementing |
227 | // MatcherInterface or using MakePolymorphicMatcher(). These |
228 | // approaches require more work than the MATCHER* macros, but also |
229 | // give you more control on the types of the value being matched and |
230 | // the matcher parameters, which may leads to better compiler error |
231 | // messages when the matcher is used wrong. They also allow |
232 | // overloading matchers based on parameter types (as opposed to just |
233 | // based on the number of parameters). |
234 | // |
235 | // MATCHER*() can only be used in a namespace scope as templates cannot be |
236 | // declared inside of a local class. |
237 | // |
238 | // More Information |
239 | // ================ |
240 | // |
241 | // To learn more about using these macros, please search for 'MATCHER' |
242 | // on |
243 | // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md |
244 | // |
245 | // This file also implements some commonly used argument matchers. More |
246 | // matchers can be defined by the user implementing the |
247 | // MatcherInterface<T> interface if necessary. |
248 | // |
249 | // See googletest/include/gtest/gtest-matchers.h for the definition of class |
250 | // Matcher, class MatcherInterface, and others. |
251 | |
252 | // IWYU pragma: private, include "gmock/gmock.h" |
253 | // IWYU pragma: friend gmock/.* |
254 | |
255 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
256 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
257 | |
258 | #include <algorithm> |
259 | #include <cmath> |
260 | #include <exception> |
261 | #include <functional> |
262 | #include <initializer_list> |
263 | #include <ios> |
264 | #include <iterator> |
265 | #include <limits> |
266 | #include <memory> |
267 | #include <ostream> // NOLINT |
268 | #include <sstream> |
269 | #include <string> |
270 | #include <type_traits> |
271 | #include <utility> |
272 | #include <vector> |
273 | |
274 | #include "gmock/internal/gmock-internal-utils.h" |
275 | #include "gmock/internal/gmock-port.h" |
276 | #include "gmock/internal/gmock-pp.h" |
277 | #include "gtest/gtest.h" |
278 | |
279 | // MSVC warning C5046 is new as of VS2017 version 15.8. |
280 | #if defined(_MSC_VER) && _MSC_VER >= 1915 |
281 | #define GMOCK_MAYBE_5046_ 5046 |
282 | #else |
283 | #define GMOCK_MAYBE_5046_ |
284 | #endif |
285 | |
286 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
287 | 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
288 | clients of class B */ |
289 | /* Symbol involving type with internal linkage not defined */) |
290 | |
291 | namespace testing { |
292 | |
293 | // To implement a matcher Foo for type T, define: |
294 | // 1. a class FooMatcherImpl that implements the |
295 | // MatcherInterface<T> interface, and |
296 | // 2. a factory function that creates a Matcher<T> object from a |
297 | // FooMatcherImpl*. |
298 | // |
299 | // The two-level delegation design makes it possible to allow a user |
300 | // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
301 | // is impossible if we pass matchers by pointers. It also eases |
302 | // ownership management as Matcher objects can now be copied like |
303 | // plain values. |
304 | |
305 | // A match result listener that stores the explanation in a string. |
306 | class StringMatchResultListener : public MatchResultListener { |
307 | public: |
308 | StringMatchResultListener() : MatchResultListener(&ss_) {} |
309 | |
310 | // Returns the explanation accumulated so far. |
311 | std::string str() const { return ss_.str(); } |
312 | |
313 | // Clears the explanation accumulated so far. |
314 | void Clear() { ss_.str(s: "" ); } |
315 | |
316 | private: |
317 | ::std::stringstream ss_; |
318 | |
319 | StringMatchResultListener(const StringMatchResultListener&) = delete; |
320 | StringMatchResultListener& operator=(const StringMatchResultListener&) = |
321 | delete; |
322 | }; |
323 | |
324 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
325 | // and MUST NOT BE USED IN USER CODE!!! |
326 | namespace internal { |
327 | |
328 | // The MatcherCastImpl class template is a helper for implementing |
329 | // MatcherCast(). We need this helper in order to partially |
330 | // specialize the implementation of MatcherCast() (C++ allows |
331 | // class/struct templates to be partially specialized, but not |
332 | // function templates.). |
333 | |
334 | // This general version is used when MatcherCast()'s argument is a |
335 | // polymorphic matcher (i.e. something that can be converted to a |
336 | // Matcher but is not one yet; for example, Eq(value)) or a value (for |
337 | // example, "hello"). |
338 | template <typename T, typename M> |
339 | class MatcherCastImpl { |
340 | public: |
341 | static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
342 | // M can be a polymorphic matcher, in which case we want to use |
343 | // its conversion operator to create Matcher<T>. Or it can be a value |
344 | // that should be passed to the Matcher<T>'s constructor. |
345 | // |
346 | // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
347 | // polymorphic matcher because it'll be ambiguous if T has an implicit |
348 | // constructor from M (this usually happens when T has an implicit |
349 | // constructor from any type). |
350 | // |
351 | // It won't work to unconditionally implicit_cast |
352 | // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
353 | // a user-defined conversion from M to T if one exists (assuming M is |
354 | // a value). |
355 | return CastImpl(polymorphic_matcher_or_value, |
356 | std::is_convertible<M, Matcher<T>>{}, |
357 | std::is_convertible<M, T>{}); |
358 | } |
359 | |
360 | private: |
361 | template <bool Ignore> |
362 | static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
363 | std::true_type /* convertible_to_matcher */, |
364 | std::integral_constant<bool, Ignore>) { |
365 | // M is implicitly convertible to Matcher<T>, which means that either |
366 | // M is a polymorphic matcher or Matcher<T> has an implicit constructor |
367 | // from M. In both cases using the implicit conversion will produce a |
368 | // matcher. |
369 | // |
370 | // Even if T has an implicit constructor from M, it won't be called because |
371 | // creating Matcher<T> would require a chain of two user-defined conversions |
372 | // (first to create T from M and then to create Matcher<T> from T). |
373 | return polymorphic_matcher_or_value; |
374 | } |
375 | |
376 | // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
377 | // matcher. It's a value of a type implicitly convertible to T. Use direct |
378 | // initialization to create a matcher. |
379 | static Matcher<T> CastImpl(const M& value, |
380 | std::false_type /* convertible_to_matcher */, |
381 | std::true_type /* convertible_to_T */) { |
382 | return Matcher<T>(ImplicitCast_<T>(value)); |
383 | } |
384 | |
385 | // M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
386 | // polymorphic matcher Eq(value) in this case. |
387 | // |
388 | // Note that we first attempt to perform an implicit cast on the value and |
389 | // only fall back to the polymorphic Eq() matcher afterwards because the |
390 | // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
391 | // which might be undefined even when Rhs is implicitly convertible to Lhs |
392 | // (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
393 | // |
394 | // We don't define this method inline as we need the declaration of Eq(). |
395 | static Matcher<T> CastImpl(const M& value, |
396 | std::false_type /* convertible_to_matcher */, |
397 | std::false_type /* convertible_to_T */); |
398 | }; |
399 | |
400 | // This more specialized version is used when MatcherCast()'s argument |
401 | // is already a Matcher. This only compiles when type T can be |
402 | // statically converted to type U. |
403 | template <typename T, typename U> |
404 | class MatcherCastImpl<T, Matcher<U>> { |
405 | public: |
406 | static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
407 | return Matcher<T>(new Impl(source_matcher)); |
408 | } |
409 | |
410 | private: |
411 | class Impl : public MatcherInterface<T> { |
412 | public: |
413 | explicit Impl(const Matcher<U>& source_matcher) |
414 | : source_matcher_(source_matcher) {} |
415 | |
416 | // We delegate the matching logic to the source matcher. |
417 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
418 | using FromType = typename std::remove_cv<typename std::remove_pointer< |
419 | typename std::remove_reference<T>::type>::type>::type; |
420 | using ToType = typename std::remove_cv<typename std::remove_pointer< |
421 | typename std::remove_reference<U>::type>::type>::type; |
422 | // Do not allow implicitly converting base*/& to derived*/&. |
423 | static_assert( |
424 | // Do not trigger if only one of them is a pointer. That implies a |
425 | // regular conversion and not a down_cast. |
426 | (std::is_pointer<typename std::remove_reference<T>::type>::value != |
427 | std::is_pointer<typename std::remove_reference<U>::type>::value) || |
428 | std::is_same<FromType, ToType>::value || |
429 | !std::is_base_of<FromType, ToType>::value, |
430 | "Can't implicitly convert from <base> to <derived>" ); |
431 | |
432 | // Do the cast to `U` explicitly if necessary. |
433 | // Otherwise, let implicit conversions do the trick. |
434 | using CastType = |
435 | typename std::conditional<std::is_convertible<T&, const U&>::value, |
436 | T&, U>::type; |
437 | |
438 | return source_matcher_.MatchAndExplain(static_cast<CastType>(x), |
439 | listener); |
440 | } |
441 | |
442 | void DescribeTo(::std::ostream* os) const override { |
443 | source_matcher_.DescribeTo(os); |
444 | } |
445 | |
446 | void DescribeNegationTo(::std::ostream* os) const override { |
447 | source_matcher_.DescribeNegationTo(os); |
448 | } |
449 | |
450 | private: |
451 | const Matcher<U> source_matcher_; |
452 | }; |
453 | }; |
454 | |
455 | // This even more specialized version is used for efficiently casting |
456 | // a matcher to its own type. |
457 | template <typename T> |
458 | class MatcherCastImpl<T, Matcher<T>> { |
459 | public: |
460 | static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
461 | }; |
462 | |
463 | // Template specialization for parameterless Matcher. |
464 | template <typename Derived> |
465 | class MatcherBaseImpl { |
466 | public: |
467 | MatcherBaseImpl() = default; |
468 | |
469 | template <typename T> |
470 | operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) |
471 | return ::testing::Matcher<T>(new |
472 | typename Derived::template gmock_Impl<T>()); |
473 | } |
474 | }; |
475 | |
476 | // Template specialization for Matcher with parameters. |
477 | template <template <typename...> class Derived, typename... Ts> |
478 | class MatcherBaseImpl<Derived<Ts...>> { |
479 | public: |
480 | // Mark the constructor explicit for single argument T to avoid implicit |
481 | // conversions. |
482 | template <typename E = std::enable_if<sizeof...(Ts) == 1>, |
483 | typename E::type* = nullptr> |
484 | explicit MatcherBaseImpl(Ts... params) |
485 | : params_(std::forward<Ts>(params)...) {} |
486 | template <typename E = std::enable_if<sizeof...(Ts) != 1>, |
487 | typename = typename E::type> |
488 | MatcherBaseImpl(Ts... params) // NOLINT |
489 | : params_(std::forward<Ts>(params)...) {} |
490 | |
491 | template <typename F> |
492 | operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) |
493 | return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); |
494 | } |
495 | |
496 | private: |
497 | template <typename F, std::size_t... tuple_ids> |
498 | ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { |
499 | return ::testing::Matcher<F>( |
500 | new typename Derived<Ts...>::template gmock_Impl<F>( |
501 | std::get<tuple_ids>(params_)...)); |
502 | } |
503 | |
504 | const std::tuple<Ts...> params_; |
505 | }; |
506 | |
507 | } // namespace internal |
508 | |
509 | // In order to be safe and clear, casting between different matcher |
510 | // types is done explicitly via MatcherCast<T>(m), which takes a |
511 | // matcher m and returns a Matcher<T>. It compiles only when T can be |
512 | // statically converted to the argument type of m. |
513 | template <typename T, typename M> |
514 | inline Matcher<T> MatcherCast(const M& matcher) { |
515 | return internal::MatcherCastImpl<T, M>::Cast(matcher); |
516 | } |
517 | |
518 | // This overload handles polymorphic matchers and values only since |
519 | // monomorphic matchers are handled by the next one. |
520 | template <typename T, typename M> |
521 | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { |
522 | return MatcherCast<T>(polymorphic_matcher_or_value); |
523 | } |
524 | |
525 | // This overload handles monomorphic matchers. |
526 | // |
527 | // In general, if type T can be implicitly converted to type U, we can |
528 | // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
529 | // contravariant): just keep a copy of the original Matcher<U>, convert the |
530 | // argument from type T to U, and then pass it to the underlying Matcher<U>. |
531 | // The only exception is when U is a reference and T is not, as the |
532 | // underlying Matcher<U> may be interested in the argument's address, which |
533 | // is not preserved in the conversion from T to U. |
534 | template <typename T, typename U> |
535 | inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { |
536 | // Enforce that T can be implicitly converted to U. |
537 | static_assert(std::is_convertible<const T&, const U&>::value, |
538 | "T must be implicitly convertible to U" ); |
539 | // Enforce that we are not converting a non-reference type T to a reference |
540 | // type U. |
541 | static_assert(std::is_reference<T>::value || !std::is_reference<U>::value, |
542 | "cannot convert non reference arg to reference" ); |
543 | // In case both T and U are arithmetic types, enforce that the |
544 | // conversion is not lossy. |
545 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
546 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
547 | constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
548 | constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
549 | static_assert( |
550 | kTIsOther || kUIsOther || |
551 | (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
552 | "conversion of arithmetic types must be lossless" ); |
553 | return MatcherCast<T>(matcher); |
554 | } |
555 | |
556 | // A<T>() returns a matcher that matches any value of type T. |
557 | template <typename T> |
558 | Matcher<T> A(); |
559 | |
560 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
561 | // and MUST NOT BE USED IN USER CODE!!! |
562 | namespace internal { |
563 | |
564 | // If the explanation is not empty, prints it to the ostream. |
565 | inline void PrintIfNotEmpty(const std::string& explanation, |
566 | ::std::ostream* os) { |
567 | if (!explanation.empty() && os != nullptr) { |
568 | *os << ", " << explanation; |
569 | } |
570 | } |
571 | |
572 | // Returns true if the given type name is easy to read by a human. |
573 | // This is used to decide whether printing the type of a value might |
574 | // be helpful. |
575 | inline bool IsReadableTypeName(const std::string& type_name) { |
576 | // We consider a type name readable if it's short or doesn't contain |
577 | // a template or function type. |
578 | return (type_name.length() <= 20 || |
579 | type_name.find_first_of(s: "<(" ) == std::string::npos); |
580 | } |
581 | |
582 | // Matches the value against the given matcher, prints the value and explains |
583 | // the match result to the listener. Returns the match result. |
584 | // 'listener' must not be NULL. |
585 | // Value cannot be passed by const reference, because some matchers take a |
586 | // non-const argument. |
587 | template <typename Value, typename T> |
588 | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
589 | MatchResultListener* listener) { |
590 | if (!listener->IsInterested()) { |
591 | // If the listener is not interested, we do not need to construct the |
592 | // inner explanation. |
593 | return matcher.Matches(value); |
594 | } |
595 | |
596 | StringMatchResultListener inner_listener; |
597 | const bool match = matcher.MatchAndExplain(value, &inner_listener); |
598 | |
599 | UniversalPrint(value, listener->stream()); |
600 | #if GTEST_HAS_RTTI |
601 | const std::string& type_name = GetTypeName<Value>(); |
602 | if (IsReadableTypeName(type_name)) |
603 | *listener->stream() << " (of type " << type_name << ")" ; |
604 | #endif |
605 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
606 | |
607 | return match; |
608 | } |
609 | |
610 | // An internal helper class for doing compile-time loop on a tuple's |
611 | // fields. |
612 | template <size_t N> |
613 | class TuplePrefix { |
614 | public: |
615 | // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
616 | // if and only if the first N fields of matcher_tuple matches |
617 | // the first N fields of value_tuple, respectively. |
618 | template <typename MatcherTuple, typename ValueTuple> |
619 | static bool Matches(const MatcherTuple& matcher_tuple, |
620 | const ValueTuple& value_tuple) { |
621 | return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
622 | std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
623 | } |
624 | |
625 | // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
626 | // describes failures in matching the first N fields of matchers |
627 | // against the first N fields of values. If there is no failure, |
628 | // nothing will be streamed to os. |
629 | template <typename MatcherTuple, typename ValueTuple> |
630 | static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
631 | const ValueTuple& values, |
632 | ::std::ostream* os) { |
633 | // First, describes failures in the first N - 1 fields. |
634 | TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
635 | |
636 | // Then describes the failure (if any) in the (N - 1)-th (0-based) |
637 | // field. |
638 | typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
639 | std::get<N - 1>(matchers); |
640 | typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
641 | const Value& value = std::get<N - 1>(values); |
642 | StringMatchResultListener listener; |
643 | if (!matcher.MatchAndExplain(value, &listener)) { |
644 | *os << " Expected arg #" << N - 1 << ": " ; |
645 | std::get<N - 1>(matchers).DescribeTo(os); |
646 | *os << "\n Actual: " ; |
647 | // We remove the reference in type Value to prevent the |
648 | // universal printer from printing the address of value, which |
649 | // isn't interesting to the user most of the time. The |
650 | // matcher's MatchAndExplain() method handles the case when |
651 | // the address is interesting. |
652 | internal::UniversalPrint(value, os); |
653 | PrintIfNotEmpty(explanation: listener.str(), os); |
654 | *os << "\n" ; |
655 | } |
656 | } |
657 | }; |
658 | |
659 | // The base case. |
660 | template <> |
661 | class TuplePrefix<0> { |
662 | public: |
663 | template <typename MatcherTuple, typename ValueTuple> |
664 | static bool Matches(const MatcherTuple& /* matcher_tuple */, |
665 | const ValueTuple& /* value_tuple */) { |
666 | return true; |
667 | } |
668 | |
669 | template <typename MatcherTuple, typename ValueTuple> |
670 | static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
671 | const ValueTuple& /* values */, |
672 | ::std::ostream* /* os */) {} |
673 | }; |
674 | |
675 | // TupleMatches(matcher_tuple, value_tuple) returns true if and only if |
676 | // all matchers in matcher_tuple match the corresponding fields in |
677 | // value_tuple. It is a compiler error if matcher_tuple and |
678 | // value_tuple have different number of fields or incompatible field |
679 | // types. |
680 | template <typename MatcherTuple, typename ValueTuple> |
681 | bool TupleMatches(const MatcherTuple& matcher_tuple, |
682 | const ValueTuple& value_tuple) { |
683 | // Makes sure that matcher_tuple and value_tuple have the same |
684 | // number of fields. |
685 | static_assert(std::tuple_size<MatcherTuple>::value == |
686 | std::tuple_size<ValueTuple>::value, |
687 | "matcher and value have different numbers of fields" ); |
688 | return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
689 | value_tuple); |
690 | } |
691 | |
692 | // Describes failures in matching matchers against values. If there |
693 | // is no failure, nothing will be streamed to os. |
694 | template <typename MatcherTuple, typename ValueTuple> |
695 | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
696 | const ValueTuple& values, ::std::ostream* os) { |
697 | TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
698 | matchers, values, os); |
699 | } |
700 | |
701 | // TransformTupleValues and its helper. |
702 | // |
703 | // TransformTupleValuesHelper hides the internal machinery that |
704 | // TransformTupleValues uses to implement a tuple traversal. |
705 | template <typename Tuple, typename Func, typename OutIter> |
706 | class TransformTupleValuesHelper { |
707 | private: |
708 | typedef ::std::tuple_size<Tuple> TupleSize; |
709 | |
710 | public: |
711 | // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
712 | // Returns the final value of 'out' in case the caller needs it. |
713 | static OutIter Run(Func f, const Tuple& t, OutIter out) { |
714 | return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
715 | } |
716 | |
717 | private: |
718 | template <typename Tup, size_t kRemainingSize> |
719 | struct IterateOverTuple { |
720 | OutIter operator()(Func f, const Tup& t, OutIter out) const { |
721 | *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
722 | return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
723 | } |
724 | }; |
725 | template <typename Tup> |
726 | struct IterateOverTuple<Tup, 0> { |
727 | OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const { |
728 | return out; |
729 | } |
730 | }; |
731 | }; |
732 | |
733 | // Successively invokes 'f(element)' on each element of the tuple 't', |
734 | // appending each result to the 'out' iterator. Returns the final value |
735 | // of 'out'. |
736 | template <typename Tuple, typename Func, typename OutIter> |
737 | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
738 | return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
739 | } |
740 | |
741 | // Implements _, a matcher that matches any value of any |
742 | // type. This is a polymorphic matcher, so we need a template type |
743 | // conversion operator to make it appearing as a Matcher<T> for any |
744 | // type T. |
745 | class AnythingMatcher { |
746 | public: |
747 | using is_gtest_matcher = void; |
748 | |
749 | template <typename T> |
750 | bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { |
751 | return true; |
752 | } |
753 | void DescribeTo(std::ostream* os) const { *os << "is anything" ; } |
754 | void DescribeNegationTo(::std::ostream* os) const { |
755 | // This is mostly for completeness' sake, as it's not very useful |
756 | // to write Not(A<bool>()). However we cannot completely rule out |
757 | // such a possibility, and it doesn't hurt to be prepared. |
758 | *os << "never matches" ; |
759 | } |
760 | }; |
761 | |
762 | // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
763 | // pointer that is NULL. |
764 | class IsNullMatcher { |
765 | public: |
766 | template <typename Pointer> |
767 | bool MatchAndExplain(const Pointer& p, |
768 | MatchResultListener* /* listener */) const { |
769 | return p == nullptr; |
770 | } |
771 | |
772 | void DescribeTo(::std::ostream* os) const { *os << "is NULL" ; } |
773 | void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
774 | }; |
775 | |
776 | // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
777 | // pointer that is not NULL. |
778 | class NotNullMatcher { |
779 | public: |
780 | template <typename Pointer> |
781 | bool MatchAndExplain(const Pointer& p, |
782 | MatchResultListener* /* listener */) const { |
783 | return p != nullptr; |
784 | } |
785 | |
786 | void DescribeTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
787 | void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL" ; } |
788 | }; |
789 | |
790 | // Ref(variable) matches any argument that is a reference to |
791 | // 'variable'. This matcher is polymorphic as it can match any |
792 | // super type of the type of 'variable'. |
793 | // |
794 | // The RefMatcher template class implements Ref(variable). It can |
795 | // only be instantiated with a reference type. This prevents a user |
796 | // from mistakenly using Ref(x) to match a non-reference function |
797 | // argument. For example, the following will righteously cause a |
798 | // compiler error: |
799 | // |
800 | // int n; |
801 | // Matcher<int> m1 = Ref(n); // This won't compile. |
802 | // Matcher<int&> m2 = Ref(n); // This will compile. |
803 | template <typename T> |
804 | class RefMatcher; |
805 | |
806 | template <typename T> |
807 | class RefMatcher<T&> { |
808 | // Google Mock is a generic framework and thus needs to support |
809 | // mocking any function types, including those that take non-const |
810 | // reference arguments. Therefore the template parameter T (and |
811 | // Super below) can be instantiated to either a const type or a |
812 | // non-const type. |
813 | public: |
814 | // RefMatcher() takes a T& instead of const T&, as we want the |
815 | // compiler to catch using Ref(const_value) as a matcher for a |
816 | // non-const reference. |
817 | explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
818 | |
819 | template <typename Super> |
820 | operator Matcher<Super&>() const { |
821 | // By passing object_ (type T&) to Impl(), which expects a Super&, |
822 | // we make sure that Super is a super type of T. In particular, |
823 | // this catches using Ref(const_value) as a matcher for a |
824 | // non-const reference, as you cannot implicitly convert a const |
825 | // reference to a non-const reference. |
826 | return MakeMatcher(new Impl<Super>(object_)); |
827 | } |
828 | |
829 | private: |
830 | template <typename Super> |
831 | class Impl : public MatcherInterface<Super&> { |
832 | public: |
833 | explicit Impl(Super& x) : object_(x) {} // NOLINT |
834 | |
835 | // MatchAndExplain() takes a Super& (as opposed to const Super&) |
836 | // in order to match the interface MatcherInterface<Super&>. |
837 | bool MatchAndExplain(Super& x, |
838 | MatchResultListener* listener) const override { |
839 | *listener << "which is located @" << static_cast<const void*>(&x); |
840 | return &x == &object_; |
841 | } |
842 | |
843 | void DescribeTo(::std::ostream* os) const override { |
844 | *os << "references the variable " ; |
845 | UniversalPrinter<Super&>::Print(object_, os); |
846 | } |
847 | |
848 | void DescribeNegationTo(::std::ostream* os) const override { |
849 | *os << "does not reference the variable " ; |
850 | UniversalPrinter<Super&>::Print(object_, os); |
851 | } |
852 | |
853 | private: |
854 | const Super& object_; |
855 | }; |
856 | |
857 | T& object_; |
858 | }; |
859 | |
860 | // Polymorphic helper functions for narrow and wide string matchers. |
861 | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
862 | return String::CaseInsensitiveCStringEquals(lhs, rhs); |
863 | } |
864 | |
865 | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
866 | const wchar_t* rhs) { |
867 | return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
868 | } |
869 | |
870 | // String comparison for narrow or wide strings that can have embedded NUL |
871 | // characters. |
872 | template <typename StringType> |
873 | bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { |
874 | // Are the heads equal? |
875 | if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
876 | return false; |
877 | } |
878 | |
879 | // Skip the equal heads. |
880 | const typename StringType::value_type nul = 0; |
881 | const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
882 | |
883 | // Are we at the end of either s1 or s2? |
884 | if (i1 == StringType::npos || i2 == StringType::npos) { |
885 | return i1 == i2; |
886 | } |
887 | |
888 | // Are the tails equal? |
889 | return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
890 | } |
891 | |
892 | // String matchers. |
893 | |
894 | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
895 | template <typename StringType> |
896 | class StrEqualityMatcher { |
897 | public: |
898 | StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) |
899 | : string_(std::move(str)), |
900 | expect_eq_(expect_eq), |
901 | case_sensitive_(case_sensitive) {} |
902 | |
903 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
904 | bool MatchAndExplain(const internal::StringView& s, |
905 | MatchResultListener* listener) const { |
906 | // This should fail to compile if StringView is used with wide |
907 | // strings. |
908 | const StringType& str = std::string(s); |
909 | return MatchAndExplain(str, listener); |
910 | } |
911 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
912 | |
913 | // Accepts pointer types, particularly: |
914 | // const char* |
915 | // char* |
916 | // const wchar_t* |
917 | // wchar_t* |
918 | template <typename CharType> |
919 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
920 | if (s == nullptr) { |
921 | return !expect_eq_; |
922 | } |
923 | return MatchAndExplain(StringType(s), listener); |
924 | } |
925 | |
926 | // Matches anything that can convert to StringType. |
927 | // |
928 | // This is a template, not just a plain function with const StringType&, |
929 | // because StringView has some interfering non-explicit constructors. |
930 | template <typename MatcheeStringType> |
931 | bool MatchAndExplain(const MatcheeStringType& s, |
932 | MatchResultListener* /* listener */) const { |
933 | const StringType s2(s); |
934 | const bool eq = case_sensitive_ ? s2 == string_ |
935 | : CaseInsensitiveStringEquals(s2, string_); |
936 | return expect_eq_ == eq; |
937 | } |
938 | |
939 | void DescribeTo(::std::ostream* os) const { |
940 | DescribeToHelper(expect_eq: expect_eq_, os); |
941 | } |
942 | |
943 | void DescribeNegationTo(::std::ostream* os) const { |
944 | DescribeToHelper(expect_eq: !expect_eq_, os); |
945 | } |
946 | |
947 | private: |
948 | void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
949 | *os << (expect_eq ? "is " : "isn't " ); |
950 | *os << "equal to " ; |
951 | if (!case_sensitive_) { |
952 | *os << "(ignoring case) " ; |
953 | } |
954 | UniversalPrint(string_, os); |
955 | } |
956 | |
957 | const StringType string_; |
958 | const bool expect_eq_; |
959 | const bool case_sensitive_; |
960 | }; |
961 | |
962 | // Implements the polymorphic HasSubstr(substring) matcher, which |
963 | // can be used as a Matcher<T> as long as T can be converted to a |
964 | // string. |
965 | template <typename StringType> |
966 | class HasSubstrMatcher { |
967 | public: |
968 | explicit HasSubstrMatcher(const StringType& substring) |
969 | : substring_(substring) {} |
970 | |
971 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
972 | bool MatchAndExplain(const internal::StringView& s, |
973 | MatchResultListener* listener) const { |
974 | // This should fail to compile if StringView is used with wide |
975 | // strings. |
976 | const StringType& str = std::string(s); |
977 | return MatchAndExplain(str, listener); |
978 | } |
979 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
980 | |
981 | // Accepts pointer types, particularly: |
982 | // const char* |
983 | // char* |
984 | // const wchar_t* |
985 | // wchar_t* |
986 | template <typename CharType> |
987 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
988 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
989 | } |
990 | |
991 | // Matches anything that can convert to StringType. |
992 | // |
993 | // This is a template, not just a plain function with const StringType&, |
994 | // because StringView has some interfering non-explicit constructors. |
995 | template <typename MatcheeStringType> |
996 | bool MatchAndExplain(const MatcheeStringType& s, |
997 | MatchResultListener* /* listener */) const { |
998 | return StringType(s).find(substring_) != StringType::npos; |
999 | } |
1000 | |
1001 | // Describes what this matcher matches. |
1002 | void DescribeTo(::std::ostream* os) const { |
1003 | *os << "has substring " ; |
1004 | UniversalPrint(substring_, os); |
1005 | } |
1006 | |
1007 | void DescribeNegationTo(::std::ostream* os) const { |
1008 | *os << "has no substring " ; |
1009 | UniversalPrint(substring_, os); |
1010 | } |
1011 | |
1012 | private: |
1013 | const StringType substring_; |
1014 | }; |
1015 | |
1016 | // Implements the polymorphic StartsWith(substring) matcher, which |
1017 | // can be used as a Matcher<T> as long as T can be converted to a |
1018 | // string. |
1019 | template <typename StringType> |
1020 | class StartsWithMatcher { |
1021 | public: |
1022 | explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {} |
1023 | |
1024 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
1025 | bool MatchAndExplain(const internal::StringView& s, |
1026 | MatchResultListener* listener) const { |
1027 | // This should fail to compile if StringView is used with wide |
1028 | // strings. |
1029 | const StringType& str = std::string(s); |
1030 | return MatchAndExplain(str, listener); |
1031 | } |
1032 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
1033 | |
1034 | // Accepts pointer types, particularly: |
1035 | // const char* |
1036 | // char* |
1037 | // const wchar_t* |
1038 | // wchar_t* |
1039 | template <typename CharType> |
1040 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
1041 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
1042 | } |
1043 | |
1044 | // Matches anything that can convert to StringType. |
1045 | // |
1046 | // This is a template, not just a plain function with const StringType&, |
1047 | // because StringView has some interfering non-explicit constructors. |
1048 | template <typename MatcheeStringType> |
1049 | bool MatchAndExplain(const MatcheeStringType& s, |
1050 | MatchResultListener* /* listener */) const { |
1051 | const StringType& s2(s); |
1052 | return s2.length() >= prefix_.length() && |
1053 | s2.substr(0, prefix_.length()) == prefix_; |
1054 | } |
1055 | |
1056 | void DescribeTo(::std::ostream* os) const { |
1057 | *os << "starts with " ; |
1058 | UniversalPrint(prefix_, os); |
1059 | } |
1060 | |
1061 | void DescribeNegationTo(::std::ostream* os) const { |
1062 | *os << "doesn't start with " ; |
1063 | UniversalPrint(prefix_, os); |
1064 | } |
1065 | |
1066 | private: |
1067 | const StringType prefix_; |
1068 | }; |
1069 | |
1070 | // Implements the polymorphic EndsWith(substring) matcher, which |
1071 | // can be used as a Matcher<T> as long as T can be converted to a |
1072 | // string. |
1073 | template <typename StringType> |
1074 | class EndsWithMatcher { |
1075 | public: |
1076 | explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
1077 | |
1078 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
1079 | bool MatchAndExplain(const internal::StringView& s, |
1080 | MatchResultListener* listener) const { |
1081 | // This should fail to compile if StringView is used with wide |
1082 | // strings. |
1083 | const StringType& str = std::string(s); |
1084 | return MatchAndExplain(str, listener); |
1085 | } |
1086 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
1087 | |
1088 | // Accepts pointer types, particularly: |
1089 | // const char* |
1090 | // char* |
1091 | // const wchar_t* |
1092 | // wchar_t* |
1093 | template <typename CharType> |
1094 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
1095 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
1096 | } |
1097 | |
1098 | // Matches anything that can convert to StringType. |
1099 | // |
1100 | // This is a template, not just a plain function with const StringType&, |
1101 | // because StringView has some interfering non-explicit constructors. |
1102 | template <typename MatcheeStringType> |
1103 | bool MatchAndExplain(const MatcheeStringType& s, |
1104 | MatchResultListener* /* listener */) const { |
1105 | const StringType& s2(s); |
1106 | return s2.length() >= suffix_.length() && |
1107 | s2.substr(s2.length() - suffix_.length()) == suffix_; |
1108 | } |
1109 | |
1110 | void DescribeTo(::std::ostream* os) const { |
1111 | *os << "ends with " ; |
1112 | UniversalPrint(suffix_, os); |
1113 | } |
1114 | |
1115 | void DescribeNegationTo(::std::ostream* os) const { |
1116 | *os << "doesn't end with " ; |
1117 | UniversalPrint(suffix_, os); |
1118 | } |
1119 | |
1120 | private: |
1121 | const StringType suffix_; |
1122 | }; |
1123 | |
1124 | // Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be |
1125 | // used as a Matcher<T> as long as T can be converted to a string. |
1126 | class WhenBase64UnescapedMatcher { |
1127 | public: |
1128 | using is_gtest_matcher = void; |
1129 | |
1130 | explicit WhenBase64UnescapedMatcher( |
1131 | const Matcher<const std::string&>& internal_matcher) |
1132 | : internal_matcher_(internal_matcher) {} |
1133 | |
1134 | // Matches anything that can convert to std::string. |
1135 | template <typename MatcheeStringType> |
1136 | bool MatchAndExplain(const MatcheeStringType& s, |
1137 | MatchResultListener* listener) const { |
1138 | const std::string s2(s); // NOLINT (needed for working with string_view). |
1139 | std::string unescaped; |
1140 | if (!internal::Base64Unescape(encoded: s2, decoded: &unescaped)) { |
1141 | if (listener != nullptr) { |
1142 | *listener << "is not a valid base64 escaped string" ; |
1143 | } |
1144 | return false; |
1145 | } |
1146 | return MatchPrintAndExplain(value&: unescaped, matcher: internal_matcher_, listener); |
1147 | } |
1148 | |
1149 | void DescribeTo(::std::ostream* os) const { |
1150 | *os << "matches after Base64Unescape " ; |
1151 | internal_matcher_.DescribeTo(os); |
1152 | } |
1153 | |
1154 | void DescribeNegationTo(::std::ostream* os) const { |
1155 | *os << "does not match after Base64Unescape " ; |
1156 | internal_matcher_.DescribeTo(os); |
1157 | } |
1158 | |
1159 | private: |
1160 | const Matcher<const std::string&> internal_matcher_; |
1161 | }; |
1162 | |
1163 | // Implements a matcher that compares the two fields of a 2-tuple |
1164 | // using one of the ==, <=, <, etc, operators. The two fields being |
1165 | // compared don't have to have the same type. |
1166 | // |
1167 | // The matcher defined here is polymorphic (for example, Eq() can be |
1168 | // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
1169 | // etc). Therefore we use a template type conversion operator in the |
1170 | // implementation. |
1171 | template <typename D, typename Op> |
1172 | class PairMatchBase { |
1173 | public: |
1174 | template <typename T1, typename T2> |
1175 | operator Matcher<::std::tuple<T1, T2>>() const { |
1176 | return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
1177 | } |
1178 | template <typename T1, typename T2> |
1179 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
1180 | return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
1181 | } |
1182 | |
1183 | private: |
1184 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
1185 | return os << D::Desc(); |
1186 | } |
1187 | |
1188 | template <typename Tuple> |
1189 | class Impl : public MatcherInterface<Tuple> { |
1190 | public: |
1191 | bool MatchAndExplain(Tuple args, |
1192 | MatchResultListener* /* listener */) const override { |
1193 | return Op()(::std::get<0>(args), ::std::get<1>(args)); |
1194 | } |
1195 | void DescribeTo(::std::ostream* os) const override { |
1196 | *os << "are " << GetDesc; |
1197 | } |
1198 | void DescribeNegationTo(::std::ostream* os) const override { |
1199 | *os << "aren't " << GetDesc; |
1200 | } |
1201 | }; |
1202 | }; |
1203 | |
1204 | class Eq2Matcher : public PairMatchBase<Eq2Matcher, std::equal_to<>> { |
1205 | public: |
1206 | static const char* Desc() { return "an equal pair" ; } |
1207 | }; |
1208 | class Ne2Matcher : public PairMatchBase<Ne2Matcher, std::not_equal_to<>> { |
1209 | public: |
1210 | static const char* Desc() { return "an unequal pair" ; } |
1211 | }; |
1212 | class Lt2Matcher : public PairMatchBase<Lt2Matcher, std::less<>> { |
1213 | public: |
1214 | static const char* Desc() { return "a pair where the first < the second" ; } |
1215 | }; |
1216 | class Gt2Matcher : public PairMatchBase<Gt2Matcher, std::greater<>> { |
1217 | public: |
1218 | static const char* Desc() { return "a pair where the first > the second" ; } |
1219 | }; |
1220 | class Le2Matcher : public PairMatchBase<Le2Matcher, std::less_equal<>> { |
1221 | public: |
1222 | static const char* Desc() { return "a pair where the first <= the second" ; } |
1223 | }; |
1224 | class Ge2Matcher : public PairMatchBase<Ge2Matcher, std::greater_equal<>> { |
1225 | public: |
1226 | static const char* Desc() { return "a pair where the first >= the second" ; } |
1227 | }; |
1228 | |
1229 | // Implements the Not(...) matcher for a particular argument type T. |
1230 | // We do not nest it inside the NotMatcher class template, as that |
1231 | // will prevent different instantiations of NotMatcher from sharing |
1232 | // the same NotMatcherImpl<T> class. |
1233 | template <typename T> |
1234 | class NotMatcherImpl : public MatcherInterface<const T&> { |
1235 | public: |
1236 | explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {} |
1237 | |
1238 | bool MatchAndExplain(const T& x, |
1239 | MatchResultListener* listener) const override { |
1240 | return !matcher_.MatchAndExplain(x, listener); |
1241 | } |
1242 | |
1243 | void DescribeTo(::std::ostream* os) const override { |
1244 | matcher_.DescribeNegationTo(os); |
1245 | } |
1246 | |
1247 | void DescribeNegationTo(::std::ostream* os) const override { |
1248 | matcher_.DescribeTo(os); |
1249 | } |
1250 | |
1251 | private: |
1252 | const Matcher<T> matcher_; |
1253 | }; |
1254 | |
1255 | // Implements the Not(m) matcher, which matches a value that doesn't |
1256 | // match matcher m. |
1257 | template <typename InnerMatcher> |
1258 | class NotMatcher { |
1259 | public: |
1260 | explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
1261 | |
1262 | // This template type conversion operator allows Not(m) to be used |
1263 | // to match any type m can match. |
1264 | template <typename T> |
1265 | operator Matcher<T>() const { |
1266 | return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
1267 | } |
1268 | |
1269 | private: |
1270 | InnerMatcher matcher_; |
1271 | }; |
1272 | |
1273 | // Implements the AllOf(m1, m2) matcher for a particular argument type |
1274 | // T. We do not nest it inside the BothOfMatcher class template, as |
1275 | // that will prevent different instantiations of BothOfMatcher from |
1276 | // sharing the same BothOfMatcherImpl<T> class. |
1277 | template <typename T> |
1278 | class AllOfMatcherImpl : public MatcherInterface<const T&> { |
1279 | public: |
1280 | explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers) |
1281 | : matchers_(std::move(matchers)) {} |
1282 | |
1283 | void DescribeTo(::std::ostream* os) const override { |
1284 | *os << "(" ; |
1285 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1286 | if (i != 0) *os << ") and (" ; |
1287 | matchers_[i].DescribeTo(os); |
1288 | } |
1289 | *os << ")" ; |
1290 | } |
1291 | |
1292 | void DescribeNegationTo(::std::ostream* os) const override { |
1293 | *os << "(" ; |
1294 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1295 | if (i != 0) *os << ") or (" ; |
1296 | matchers_[i].DescribeNegationTo(os); |
1297 | } |
1298 | *os << ")" ; |
1299 | } |
1300 | |
1301 | bool MatchAndExplain(const T& x, |
1302 | MatchResultListener* listener) const override { |
1303 | // If either matcher1_ or matcher2_ doesn't match x, we only need |
1304 | // to explain why one of them fails. |
1305 | std::string all_match_result; |
1306 | |
1307 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1308 | StringMatchResultListener slistener; |
1309 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1310 | if (all_match_result.empty()) { |
1311 | all_match_result = slistener.str(); |
1312 | } else { |
1313 | std::string result = slistener.str(); |
1314 | if (!result.empty()) { |
1315 | all_match_result += ", and " ; |
1316 | all_match_result += result; |
1317 | } |
1318 | } |
1319 | } else { |
1320 | *listener << slistener.str(); |
1321 | return false; |
1322 | } |
1323 | } |
1324 | |
1325 | // Otherwise we need to explain why *both* of them match. |
1326 | *listener << all_match_result; |
1327 | return true; |
1328 | } |
1329 | |
1330 | private: |
1331 | const std::vector<Matcher<T>> matchers_; |
1332 | }; |
1333 | |
1334 | // VariadicMatcher is used for the variadic implementation of |
1335 | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
1336 | // CombiningMatcher<T> is used to recursively combine the provided matchers |
1337 | // (of type Args...). |
1338 | template <template <typename T> class CombiningMatcher, typename... Args> |
1339 | class VariadicMatcher { |
1340 | public: |
1341 | VariadicMatcher(const Args&... matchers) // NOLINT |
1342 | : matchers_(matchers...) { |
1343 | static_assert(sizeof...(Args) > 0, "Must have at least one matcher." ); |
1344 | } |
1345 | |
1346 | VariadicMatcher(const VariadicMatcher&) = default; |
1347 | VariadicMatcher& operator=(const VariadicMatcher&) = delete; |
1348 | |
1349 | // This template type conversion operator allows an |
1350 | // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
1351 | // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
1352 | template <typename T> |
1353 | operator Matcher<T>() const { |
1354 | std::vector<Matcher<T>> values; |
1355 | CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
1356 | return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
1357 | } |
1358 | |
1359 | private: |
1360 | template <typename T, size_t I> |
1361 | void CreateVariadicMatcher(std::vector<Matcher<T>>* values, |
1362 | std::integral_constant<size_t, I>) const { |
1363 | values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
1364 | CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
1365 | } |
1366 | |
1367 | template <typename T> |
1368 | void CreateVariadicMatcher( |
1369 | std::vector<Matcher<T>>*, |
1370 | std::integral_constant<size_t, sizeof...(Args)>) const {} |
1371 | |
1372 | std::tuple<Args...> matchers_; |
1373 | }; |
1374 | |
1375 | template <typename... Args> |
1376 | using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
1377 | |
1378 | // Implements the AnyOf(m1, m2) matcher for a particular argument type |
1379 | // T. We do not nest it inside the AnyOfMatcher class template, as |
1380 | // that will prevent different instantiations of AnyOfMatcher from |
1381 | // sharing the same EitherOfMatcherImpl<T> class. |
1382 | template <typename T> |
1383 | class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
1384 | public: |
1385 | explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers) |
1386 | : matchers_(std::move(matchers)) {} |
1387 | |
1388 | void DescribeTo(::std::ostream* os) const override { |
1389 | *os << "(" ; |
1390 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1391 | if (i != 0) *os << ") or (" ; |
1392 | matchers_[i].DescribeTo(os); |
1393 | } |
1394 | *os << ")" ; |
1395 | } |
1396 | |
1397 | void DescribeNegationTo(::std::ostream* os) const override { |
1398 | *os << "(" ; |
1399 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1400 | if (i != 0) *os << ") and (" ; |
1401 | matchers_[i].DescribeNegationTo(os); |
1402 | } |
1403 | *os << ")" ; |
1404 | } |
1405 | |
1406 | bool MatchAndExplain(const T& x, |
1407 | MatchResultListener* listener) const override { |
1408 | std::string no_match_result; |
1409 | |
1410 | // If either matcher1_ or matcher2_ matches x, we just need to |
1411 | // explain why *one* of them matches. |
1412 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1413 | StringMatchResultListener slistener; |
1414 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1415 | *listener << slistener.str(); |
1416 | return true; |
1417 | } else { |
1418 | if (no_match_result.empty()) { |
1419 | no_match_result = slistener.str(); |
1420 | } else { |
1421 | std::string result = slistener.str(); |
1422 | if (!result.empty()) { |
1423 | no_match_result += ", and " ; |
1424 | no_match_result += result; |
1425 | } |
1426 | } |
1427 | } |
1428 | } |
1429 | |
1430 | // Otherwise we need to explain why *both* of them fail. |
1431 | *listener << no_match_result; |
1432 | return false; |
1433 | } |
1434 | |
1435 | private: |
1436 | const std::vector<Matcher<T>> matchers_; |
1437 | }; |
1438 | |
1439 | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
1440 | template <typename... Args> |
1441 | using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
1442 | |
1443 | // ConditionalMatcher is the implementation of Conditional(cond, m1, m2) |
1444 | template <typename MatcherTrue, typename MatcherFalse> |
1445 | class ConditionalMatcher { |
1446 | public: |
1447 | ConditionalMatcher(bool condition, MatcherTrue matcher_true, |
1448 | MatcherFalse matcher_false) |
1449 | : condition_(condition), |
1450 | matcher_true_(std::move(matcher_true)), |
1451 | matcher_false_(std::move(matcher_false)) {} |
1452 | |
1453 | template <typename T> |
1454 | operator Matcher<T>() const { // NOLINT(runtime/explicit) |
1455 | return condition_ ? SafeMatcherCast<T>(matcher_true_) |
1456 | : SafeMatcherCast<T>(matcher_false_); |
1457 | } |
1458 | |
1459 | private: |
1460 | bool condition_; |
1461 | MatcherTrue matcher_true_; |
1462 | MatcherFalse matcher_false_; |
1463 | }; |
1464 | |
1465 | // Wrapper for implementation of Any/AllOfArray(). |
1466 | template <template <class> class MatcherImpl, typename T> |
1467 | class SomeOfArrayMatcher { |
1468 | public: |
1469 | // Constructs the matcher from a sequence of element values or |
1470 | // element matchers. |
1471 | template <typename Iter> |
1472 | SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
1473 | |
1474 | template <typename U> |
1475 | operator Matcher<U>() const { // NOLINT |
1476 | using RawU = typename std::decay<U>::type; |
1477 | std::vector<Matcher<RawU>> matchers; |
1478 | matchers.reserve(matchers_.size()); |
1479 | for (const auto& matcher : matchers_) { |
1480 | matchers.push_back(MatcherCast<RawU>(matcher)); |
1481 | } |
1482 | return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
1483 | } |
1484 | |
1485 | private: |
1486 | const ::std::vector<T> matchers_; |
1487 | }; |
1488 | |
1489 | template <typename T> |
1490 | using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
1491 | |
1492 | template <typename T> |
1493 | using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
1494 | |
1495 | // Used for implementing Truly(pred), which turns a predicate into a |
1496 | // matcher. |
1497 | template <typename Predicate> |
1498 | class TrulyMatcher { |
1499 | public: |
1500 | explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
1501 | |
1502 | // This method template allows Truly(pred) to be used as a matcher |
1503 | // for type T where T is the argument type of predicate 'pred'. The |
1504 | // argument is passed by reference as the predicate may be |
1505 | // interested in the address of the argument. |
1506 | template <typename T> |
1507 | bool MatchAndExplain(T& x, // NOLINT |
1508 | MatchResultListener* listener) const { |
1509 | // Without the if-statement, MSVC sometimes warns about converting |
1510 | // a value to bool (warning 4800). |
1511 | // |
1512 | // We cannot write 'return !!predicate_(x);' as that doesn't work |
1513 | // when predicate_(x) returns a class convertible to bool but |
1514 | // having no operator!(). |
1515 | if (predicate_(x)) return true; |
1516 | *listener << "didn't satisfy the given predicate" ; |
1517 | return false; |
1518 | } |
1519 | |
1520 | void DescribeTo(::std::ostream* os) const { |
1521 | *os << "satisfies the given predicate" ; |
1522 | } |
1523 | |
1524 | void DescribeNegationTo(::std::ostream* os) const { |
1525 | *os << "doesn't satisfy the given predicate" ; |
1526 | } |
1527 | |
1528 | private: |
1529 | Predicate predicate_; |
1530 | }; |
1531 | |
1532 | // Used for implementing Matches(matcher), which turns a matcher into |
1533 | // a predicate. |
1534 | template <typename M> |
1535 | class MatcherAsPredicate { |
1536 | public: |
1537 | explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
1538 | |
1539 | // This template operator() allows Matches(m) to be used as a |
1540 | // predicate on type T where m is a matcher on type T. |
1541 | // |
1542 | // The argument x is passed by reference instead of by value, as |
1543 | // some matcher may be interested in its address (e.g. as in |
1544 | // Matches(Ref(n))(x)). |
1545 | template <typename T> |
1546 | bool operator()(const T& x) const { |
1547 | // We let matcher_ commit to a particular type here instead of |
1548 | // when the MatcherAsPredicate object was constructed. This |
1549 | // allows us to write Matches(m) where m is a polymorphic matcher |
1550 | // (e.g. Eq(5)). |
1551 | // |
1552 | // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
1553 | // compile when matcher_ has type Matcher<const T&>; if we write |
1554 | // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
1555 | // when matcher_ has type Matcher<T>; if we just write |
1556 | // matcher_.Matches(x), it won't compile when matcher_ is |
1557 | // polymorphic, e.g. Eq(5). |
1558 | // |
1559 | // MatcherCast<const T&>() is necessary for making the code work |
1560 | // in all of the above situations. |
1561 | return MatcherCast<const T&>(matcher_).Matches(x); |
1562 | } |
1563 | |
1564 | private: |
1565 | M matcher_; |
1566 | }; |
1567 | |
1568 | // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
1569 | // argument M must be a type that can be converted to a matcher. |
1570 | template <typename M> |
1571 | class PredicateFormatterFromMatcher { |
1572 | public: |
1573 | explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
1574 | |
1575 | // This template () operator allows a PredicateFormatterFromMatcher |
1576 | // object to act as a predicate-formatter suitable for using with |
1577 | // Google Test's EXPECT_PRED_FORMAT1() macro. |
1578 | template <typename T> |
1579 | AssertionResult operator()(const char* value_text, const T& x) const { |
1580 | // We convert matcher_ to a Matcher<const T&> *now* instead of |
1581 | // when the PredicateFormatterFromMatcher object was constructed, |
1582 | // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
1583 | // know which type to instantiate it to until we actually see the |
1584 | // type of x here. |
1585 | // |
1586 | // We write SafeMatcherCast<const T&>(matcher_) instead of |
1587 | // Matcher<const T&>(matcher_), as the latter won't compile when |
1588 | // matcher_ has type Matcher<T> (e.g. An<int>()). |
1589 | // We don't write MatcherCast<const T&> either, as that allows |
1590 | // potentially unsafe downcasting of the matcher argument. |
1591 | const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
1592 | |
1593 | // The expected path here is that the matcher should match (i.e. that most |
1594 | // tests pass) so optimize for this case. |
1595 | if (matcher.Matches(x)) { |
1596 | return AssertionSuccess(); |
1597 | } |
1598 | |
1599 | ::std::stringstream ss; |
1600 | ss << "Value of: " << value_text << "\n" |
1601 | << "Expected: " ; |
1602 | matcher.DescribeTo(&ss); |
1603 | |
1604 | // Rerun the matcher to "PrintAndExplain" the failure. |
1605 | StringMatchResultListener listener; |
1606 | if (MatchPrintAndExplain(x, matcher, &listener)) { |
1607 | ss << "\n The matcher failed on the initial attempt; but passed when " |
1608 | "rerun to generate the explanation." ; |
1609 | } |
1610 | ss << "\n Actual: " << listener.str(); |
1611 | return AssertionFailure() << ss.str(); |
1612 | } |
1613 | |
1614 | private: |
1615 | const M matcher_; |
1616 | }; |
1617 | |
1618 | // A helper function for converting a matcher to a predicate-formatter |
1619 | // without the user needing to explicitly write the type. This is |
1620 | // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
1621 | // Implementation detail: 'matcher' is received by-value to force decaying. |
1622 | template <typename M> |
1623 | inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher( |
1624 | M matcher) { |
1625 | return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
1626 | } |
1627 | |
1628 | // Implements the polymorphic IsNan() matcher, which matches any floating type |
1629 | // value that is Nan. |
1630 | class IsNanMatcher { |
1631 | public: |
1632 | template <typename FloatType> |
1633 | bool MatchAndExplain(const FloatType& f, |
1634 | MatchResultListener* /* listener */) const { |
1635 | return (::std::isnan)(f); |
1636 | } |
1637 | |
1638 | void DescribeTo(::std::ostream* os) const { *os << "is NaN" ; } |
1639 | void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN" ; } |
1640 | }; |
1641 | |
1642 | // Implements the polymorphic floating point equality matcher, which matches |
1643 | // two float values using ULP-based approximation or, optionally, a |
1644 | // user-specified epsilon. The template is meant to be instantiated with |
1645 | // FloatType being either float or double. |
1646 | template <typename FloatType> |
1647 | class FloatingEqMatcher { |
1648 | public: |
1649 | // Constructor for FloatingEqMatcher. |
1650 | // The matcher's input will be compared with expected. The matcher treats two |
1651 | // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
1652 | // equality comparisons between NANs will always return false. We specify a |
1653 | // negative max_abs_error_ term to indicate that ULP-based approximation will |
1654 | // be used for comparison. |
1655 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan) |
1656 | : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {} |
1657 | |
1658 | // Constructor that supports a user-specified max_abs_error that will be used |
1659 | // for comparison instead of ULP-based approximation. The max absolute |
1660 | // should be non-negative. |
1661 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
1662 | FloatType max_abs_error) |
1663 | : expected_(expected), |
1664 | nan_eq_nan_(nan_eq_nan), |
1665 | max_abs_error_(max_abs_error) { |
1666 | GTEST_CHECK_(max_abs_error >= 0) |
1667 | << ", where max_abs_error is" << max_abs_error; |
1668 | } |
1669 | |
1670 | // Implements floating point equality matcher as a Matcher<T>. |
1671 | template <typename T> |
1672 | class Impl : public MatcherInterface<T> { |
1673 | public: |
1674 | Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
1675 | : expected_(expected), |
1676 | nan_eq_nan_(nan_eq_nan), |
1677 | max_abs_error_(max_abs_error) {} |
1678 | |
1679 | bool MatchAndExplain(T value, |
1680 | MatchResultListener* listener) const override { |
1681 | const FloatingPoint<FloatType> actual(value), expected(expected_); |
1682 | |
1683 | // Compares NaNs first, if nan_eq_nan_ is true. |
1684 | if (actual.is_nan() || expected.is_nan()) { |
1685 | if (actual.is_nan() && expected.is_nan()) { |
1686 | return nan_eq_nan_; |
1687 | } |
1688 | // One is nan; the other is not nan. |
1689 | return false; |
1690 | } |
1691 | if (HasMaxAbsError()) { |
1692 | // We perform an equality check so that inf will match inf, regardless |
1693 | // of error bounds. If the result of value - expected_ would result in |
1694 | // overflow or if either value is inf, the default result is infinity, |
1695 | // which should only match if max_abs_error_ is also infinity. |
1696 | if (value == expected_) { |
1697 | return true; |
1698 | } |
1699 | |
1700 | const FloatType diff = value - expected_; |
1701 | if (::std::fabs(diff) <= max_abs_error_) { |
1702 | return true; |
1703 | } |
1704 | |
1705 | if (listener->IsInterested()) { |
1706 | *listener << "which is " << diff << " from " << expected_; |
1707 | } |
1708 | return false; |
1709 | } else { |
1710 | return actual.AlmostEquals(expected); |
1711 | } |
1712 | } |
1713 | |
1714 | void DescribeTo(::std::ostream* os) const override { |
1715 | // os->precision() returns the previously set precision, which we |
1716 | // store to restore the ostream to its original configuration |
1717 | // after outputting. |
1718 | const ::std::streamsize old_precision = |
1719 | os->precision(::std::numeric_limits<FloatType>::digits10 + 2); |
1720 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
1721 | if (nan_eq_nan_) { |
1722 | *os << "is NaN" ; |
1723 | } else { |
1724 | *os << "never matches" ; |
1725 | } |
1726 | } else { |
1727 | *os << "is approximately " << expected_; |
1728 | if (HasMaxAbsError()) { |
1729 | *os << " (absolute error <= " << max_abs_error_ << ")" ; |
1730 | } |
1731 | } |
1732 | os->precision(prec: old_precision); |
1733 | } |
1734 | |
1735 | void DescribeNegationTo(::std::ostream* os) const override { |
1736 | // As before, get original precision. |
1737 | const ::std::streamsize old_precision = |
1738 | os->precision(::std::numeric_limits<FloatType>::digits10 + 2); |
1739 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
1740 | if (nan_eq_nan_) { |
1741 | *os << "isn't NaN" ; |
1742 | } else { |
1743 | *os << "is anything" ; |
1744 | } |
1745 | } else { |
1746 | *os << "isn't approximately " << expected_; |
1747 | if (HasMaxAbsError()) { |
1748 | *os << " (absolute error > " << max_abs_error_ << ")" ; |
1749 | } |
1750 | } |
1751 | // Restore original precision. |
1752 | os->precision(prec: old_precision); |
1753 | } |
1754 | |
1755 | private: |
1756 | bool HasMaxAbsError() const { return max_abs_error_ >= 0; } |
1757 | |
1758 | const FloatType expected_; |
1759 | const bool nan_eq_nan_; |
1760 | // max_abs_error will be used for value comparison when >= 0. |
1761 | const FloatType max_abs_error_; |
1762 | }; |
1763 | |
1764 | // The following 3 type conversion operators allow FloatEq(expected) and |
1765 | // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
1766 | // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
1767 | operator Matcher<FloatType>() const { |
1768 | return MakeMatcher( |
1769 | new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
1770 | } |
1771 | |
1772 | operator Matcher<const FloatType&>() const { |
1773 | return MakeMatcher( |
1774 | new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
1775 | } |
1776 | |
1777 | operator Matcher<FloatType&>() const { |
1778 | return MakeMatcher( |
1779 | new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
1780 | } |
1781 | |
1782 | private: |
1783 | const FloatType expected_; |
1784 | const bool nan_eq_nan_; |
1785 | // max_abs_error will be used for value comparison when >= 0. |
1786 | const FloatType max_abs_error_; |
1787 | }; |
1788 | |
1789 | // A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
1790 | // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
1791 | // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
1792 | // against y. The former implements "Eq", the latter "Near". At present, there |
1793 | // is no version that compares NaNs as equal. |
1794 | template <typename FloatType> |
1795 | class FloatingEq2Matcher { |
1796 | public: |
1797 | FloatingEq2Matcher() { Init(max_abs_error_val: -1, nan_eq_nan_val: false); } |
1798 | |
1799 | explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(max_abs_error_val: -1, nan_eq_nan_val: nan_eq_nan); } |
1800 | |
1801 | explicit FloatingEq2Matcher(FloatType max_abs_error) { |
1802 | Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: false); |
1803 | } |
1804 | |
1805 | FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
1806 | Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: nan_eq_nan); |
1807 | } |
1808 | |
1809 | template <typename T1, typename T2> |
1810 | operator Matcher<::std::tuple<T1, T2>>() const { |
1811 | return MakeMatcher( |
1812 | new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
1813 | } |
1814 | template <typename T1, typename T2> |
1815 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
1816 | return MakeMatcher( |
1817 | new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
1818 | } |
1819 | |
1820 | private: |
1821 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
1822 | return os << "an almost-equal pair" ; |
1823 | } |
1824 | |
1825 | template <typename Tuple> |
1826 | class Impl : public MatcherInterface<Tuple> { |
1827 | public: |
1828 | Impl(FloatType max_abs_error, bool nan_eq_nan) |
1829 | : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {} |
1830 | |
1831 | bool MatchAndExplain(Tuple args, |
1832 | MatchResultListener* listener) const override { |
1833 | if (max_abs_error_ == -1) { |
1834 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
1835 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
1836 | ::std::get<1>(args), listener); |
1837 | } else { |
1838 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
1839 | max_abs_error_); |
1840 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
1841 | ::std::get<1>(args), listener); |
1842 | } |
1843 | } |
1844 | void DescribeTo(::std::ostream* os) const override { |
1845 | *os << "are " << GetDesc; |
1846 | } |
1847 | void DescribeNegationTo(::std::ostream* os) const override { |
1848 | *os << "aren't " << GetDesc; |
1849 | } |
1850 | |
1851 | private: |
1852 | FloatType max_abs_error_; |
1853 | const bool nan_eq_nan_; |
1854 | }; |
1855 | |
1856 | void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
1857 | max_abs_error_ = max_abs_error_val; |
1858 | nan_eq_nan_ = nan_eq_nan_val; |
1859 | } |
1860 | FloatType max_abs_error_; |
1861 | bool nan_eq_nan_; |
1862 | }; |
1863 | |
1864 | // Implements the Pointee(m) matcher for matching a pointer whose |
1865 | // pointee matches matcher m. The pointer can be either raw or smart. |
1866 | template <typename InnerMatcher> |
1867 | class PointeeMatcher { |
1868 | public: |
1869 | explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
1870 | |
1871 | // This type conversion operator template allows Pointee(m) to be |
1872 | // used as a matcher for any pointer type whose pointee type is |
1873 | // compatible with the inner matcher, where type Pointer can be |
1874 | // either a raw pointer or a smart pointer. |
1875 | // |
1876 | // The reason we do this instead of relying on |
1877 | // MakePolymorphicMatcher() is that the latter is not flexible |
1878 | // enough for implementing the DescribeTo() method of Pointee(). |
1879 | template <typename Pointer> |
1880 | operator Matcher<Pointer>() const { |
1881 | return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
1882 | } |
1883 | |
1884 | private: |
1885 | // The monomorphic implementation that works for a particular pointer type. |
1886 | template <typename Pointer> |
1887 | class Impl : public MatcherInterface<Pointer> { |
1888 | public: |
1889 | using Pointee = |
1890 | typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
1891 | Pointer)>::element_type; |
1892 | |
1893 | explicit Impl(const InnerMatcher& matcher) |
1894 | : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
1895 | |
1896 | void DescribeTo(::std::ostream* os) const override { |
1897 | *os << "points to a value that " ; |
1898 | matcher_.DescribeTo(os); |
1899 | } |
1900 | |
1901 | void DescribeNegationTo(::std::ostream* os) const override { |
1902 | *os << "does not point to a value that " ; |
1903 | matcher_.DescribeTo(os); |
1904 | } |
1905 | |
1906 | bool MatchAndExplain(Pointer pointer, |
1907 | MatchResultListener* listener) const override { |
1908 | if (GetRawPointer(pointer) == nullptr) return false; |
1909 | |
1910 | *listener << "which points to " ; |
1911 | return MatchPrintAndExplain(*pointer, matcher_, listener); |
1912 | } |
1913 | |
1914 | private: |
1915 | const Matcher<const Pointee&> matcher_; |
1916 | }; |
1917 | |
1918 | const InnerMatcher matcher_; |
1919 | }; |
1920 | |
1921 | // Implements the Pointer(m) matcher |
1922 | // Implements the Pointer(m) matcher for matching a pointer that matches matcher |
1923 | // m. The pointer can be either raw or smart, and will match `m` against the |
1924 | // raw pointer. |
1925 | template <typename InnerMatcher> |
1926 | class PointerMatcher { |
1927 | public: |
1928 | explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
1929 | |
1930 | // This type conversion operator template allows Pointer(m) to be |
1931 | // used as a matcher for any pointer type whose pointer type is |
1932 | // compatible with the inner matcher, where type PointerType can be |
1933 | // either a raw pointer or a smart pointer. |
1934 | // |
1935 | // The reason we do this instead of relying on |
1936 | // MakePolymorphicMatcher() is that the latter is not flexible |
1937 | // enough for implementing the DescribeTo() method of Pointer(). |
1938 | template <typename PointerType> |
1939 | operator Matcher<PointerType>() const { // NOLINT |
1940 | return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); |
1941 | } |
1942 | |
1943 | private: |
1944 | // The monomorphic implementation that works for a particular pointer type. |
1945 | template <typename PointerType> |
1946 | class Impl : public MatcherInterface<PointerType> { |
1947 | public: |
1948 | using Pointer = |
1949 | const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
1950 | PointerType)>::element_type*; |
1951 | |
1952 | explicit Impl(const InnerMatcher& matcher) |
1953 | : matcher_(MatcherCast<Pointer>(matcher)) {} |
1954 | |
1955 | void DescribeTo(::std::ostream* os) const override { |
1956 | *os << "is a pointer that " ; |
1957 | matcher_.DescribeTo(os); |
1958 | } |
1959 | |
1960 | void DescribeNegationTo(::std::ostream* os) const override { |
1961 | *os << "is not a pointer that " ; |
1962 | matcher_.DescribeTo(os); |
1963 | } |
1964 | |
1965 | bool MatchAndExplain(PointerType pointer, |
1966 | MatchResultListener* listener) const override { |
1967 | *listener << "which is a pointer that " ; |
1968 | Pointer p = GetRawPointer(pointer); |
1969 | return MatchPrintAndExplain(p, matcher_, listener); |
1970 | } |
1971 | |
1972 | private: |
1973 | Matcher<Pointer> matcher_; |
1974 | }; |
1975 | |
1976 | const InnerMatcher matcher_; |
1977 | }; |
1978 | |
1979 | #if GTEST_HAS_RTTI |
1980 | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
1981 | // reference that matches inner_matcher when dynamic_cast<T> is applied. |
1982 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
1983 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
1984 | // If To is a reference and the cast fails, this matcher returns false |
1985 | // immediately. |
1986 | template <typename To> |
1987 | class WhenDynamicCastToMatcherBase { |
1988 | public: |
1989 | explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
1990 | : matcher_(matcher) {} |
1991 | |
1992 | void DescribeTo(::std::ostream* os) const { |
1993 | GetCastTypeDescription(os); |
1994 | matcher_.DescribeTo(os); |
1995 | } |
1996 | |
1997 | void DescribeNegationTo(::std::ostream* os) const { |
1998 | GetCastTypeDescription(os); |
1999 | matcher_.DescribeNegationTo(os); |
2000 | } |
2001 | |
2002 | protected: |
2003 | const Matcher<To> matcher_; |
2004 | |
2005 | static std::string GetToName() { return GetTypeName<To>(); } |
2006 | |
2007 | private: |
2008 | static void GetCastTypeDescription(::std::ostream* os) { |
2009 | *os << "when dynamic_cast to " << GetToName() << ", " ; |
2010 | } |
2011 | }; |
2012 | |
2013 | // Primary template. |
2014 | // To is a pointer. Cast and forward the result. |
2015 | template <typename To> |
2016 | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
2017 | public: |
2018 | explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
2019 | : WhenDynamicCastToMatcherBase<To>(matcher) {} |
2020 | |
2021 | template <typename From> |
2022 | bool MatchAndExplain(From from, MatchResultListener* listener) const { |
2023 | To to = dynamic_cast<To>(from); |
2024 | return MatchPrintAndExplain(to, this->matcher_, listener); |
2025 | } |
2026 | }; |
2027 | |
2028 | // Specialize for references. |
2029 | // In this case we return false if the dynamic_cast fails. |
2030 | template <typename To> |
2031 | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
2032 | public: |
2033 | explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
2034 | : WhenDynamicCastToMatcherBase<To&>(matcher) {} |
2035 | |
2036 | template <typename From> |
2037 | bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
2038 | // We don't want an std::bad_cast here, so do the cast with pointers. |
2039 | To* to = dynamic_cast<To*>(&from); |
2040 | if (to == nullptr) { |
2041 | *listener << "which cannot be dynamic_cast to " << this->GetToName(); |
2042 | return false; |
2043 | } |
2044 | return MatchPrintAndExplain(*to, this->matcher_, listener); |
2045 | } |
2046 | }; |
2047 | #endif // GTEST_HAS_RTTI |
2048 | |
2049 | // Implements the Field() matcher for matching a field (i.e. member |
2050 | // variable) of an object. |
2051 | template <typename Class, typename FieldType> |
2052 | class FieldMatcher { |
2053 | public: |
2054 | FieldMatcher(FieldType Class::*field, |
2055 | const Matcher<const FieldType&>& matcher) |
2056 | : field_(field), matcher_(matcher), whose_field_("whose given field " ) {} |
2057 | |
2058 | FieldMatcher(const std::string& field_name, FieldType Class::*field, |
2059 | const Matcher<const FieldType&>& matcher) |
2060 | : field_(field), |
2061 | matcher_(matcher), |
2062 | whose_field_("whose field `" + field_name + "` " ) {} |
2063 | |
2064 | void DescribeTo(::std::ostream* os) const { |
2065 | *os << "is an object " << whose_field_; |
2066 | matcher_.DescribeTo(os); |
2067 | } |
2068 | |
2069 | void DescribeNegationTo(::std::ostream* os) const { |
2070 | *os << "is an object " << whose_field_; |
2071 | matcher_.DescribeNegationTo(os); |
2072 | } |
2073 | |
2074 | template <typename T> |
2075 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
2076 | // FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
2077 | // a compiler bug, and can now be removed. |
2078 | return MatchAndExplainImpl( |
2079 | typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
2080 | value, listener); |
2081 | } |
2082 | |
2083 | private: |
2084 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
2085 | const Class& obj, |
2086 | MatchResultListener* listener) const { |
2087 | *listener << whose_field_ << "is " ; |
2088 | return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
2089 | } |
2090 | |
2091 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
2092 | MatchResultListener* listener) const { |
2093 | if (p == nullptr) return false; |
2094 | |
2095 | *listener << "which points to an object " ; |
2096 | // Since *p has a field, it must be a class/struct/union type and |
2097 | // thus cannot be a pointer. Therefore we pass false_type() as |
2098 | // the first argument. |
2099 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
2100 | } |
2101 | |
2102 | const FieldType Class::*field_; |
2103 | const Matcher<const FieldType&> matcher_; |
2104 | |
2105 | // Contains either "whose given field " if the name of the field is unknown |
2106 | // or "whose field `name_of_field` " if the name is known. |
2107 | const std::string whose_field_; |
2108 | }; |
2109 | |
2110 | // Implements the Property() matcher for matching a property |
2111 | // (i.e. return value of a getter method) of an object. |
2112 | // |
2113 | // Property is a const-qualified member function of Class returning |
2114 | // PropertyType. |
2115 | template <typename Class, typename PropertyType, typename Property> |
2116 | class PropertyMatcher { |
2117 | public: |
2118 | typedef const PropertyType& RefToConstProperty; |
2119 | |
2120 | PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
2121 | : property_(property), |
2122 | matcher_(matcher), |
2123 | whose_property_("whose given property " ) {} |
2124 | |
2125 | PropertyMatcher(const std::string& property_name, Property property, |
2126 | const Matcher<RefToConstProperty>& matcher) |
2127 | : property_(property), |
2128 | matcher_(matcher), |
2129 | whose_property_("whose property `" + property_name + "` " ) {} |
2130 | |
2131 | void DescribeTo(::std::ostream* os) const { |
2132 | *os << "is an object " << whose_property_; |
2133 | matcher_.DescribeTo(os); |
2134 | } |
2135 | |
2136 | void DescribeNegationTo(::std::ostream* os) const { |
2137 | *os << "is an object " << whose_property_; |
2138 | matcher_.DescribeNegationTo(os); |
2139 | } |
2140 | |
2141 | template <typename T> |
2142 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
2143 | return MatchAndExplainImpl( |
2144 | typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
2145 | value, listener); |
2146 | } |
2147 | |
2148 | private: |
2149 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
2150 | const Class& obj, |
2151 | MatchResultListener* listener) const { |
2152 | *listener << whose_property_ << "is " ; |
2153 | // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
2154 | // which takes a non-const reference as argument. |
2155 | RefToConstProperty result = (obj.*property_)(); |
2156 | return MatchPrintAndExplain(result, matcher_, listener); |
2157 | } |
2158 | |
2159 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
2160 | MatchResultListener* listener) const { |
2161 | if (p == nullptr) return false; |
2162 | |
2163 | *listener << "which points to an object " ; |
2164 | // Since *p has a property method, it must be a class/struct/union |
2165 | // type and thus cannot be a pointer. Therefore we pass |
2166 | // false_type() as the first argument. |
2167 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
2168 | } |
2169 | |
2170 | Property property_; |
2171 | const Matcher<RefToConstProperty> matcher_; |
2172 | |
2173 | // Contains either "whose given property " if the name of the property is |
2174 | // unknown or "whose property `name_of_property` " if the name is known. |
2175 | const std::string whose_property_; |
2176 | }; |
2177 | |
2178 | // Type traits specifying various features of different functors for ResultOf. |
2179 | // The default template specifies features for functor objects. |
2180 | template <typename Functor> |
2181 | struct CallableTraits { |
2182 | typedef Functor StorageType; |
2183 | |
2184 | static void CheckIsValid(Functor /* functor */) {} |
2185 | |
2186 | template <typename T> |
2187 | static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { |
2188 | return f(arg); |
2189 | } |
2190 | }; |
2191 | |
2192 | // Specialization for function pointers. |
2193 | template <typename ArgType, typename ResType> |
2194 | struct CallableTraits<ResType (*)(ArgType)> { |
2195 | typedef ResType ResultType; |
2196 | typedef ResType (*StorageType)(ArgType); |
2197 | |
2198 | static void CheckIsValid(ResType (*f)(ArgType)) { |
2199 | GTEST_CHECK_(f != nullptr) |
2200 | << "NULL function pointer is passed into ResultOf()." ; |
2201 | } |
2202 | template <typename T> |
2203 | static ResType Invoke(ResType (*f)(ArgType), T arg) { |
2204 | return (*f)(arg); |
2205 | } |
2206 | }; |
2207 | |
2208 | // Implements the ResultOf() matcher for matching a return value of a |
2209 | // unary function of an object. |
2210 | template <typename Callable, typename InnerMatcher> |
2211 | class ResultOfMatcher { |
2212 | public: |
2213 | ResultOfMatcher(Callable callable, InnerMatcher matcher) |
2214 | : ResultOfMatcher(/*result_description=*/"" , std::move(callable), |
2215 | std::move(matcher)) {} |
2216 | |
2217 | ResultOfMatcher(const std::string& result_description, Callable callable, |
2218 | InnerMatcher matcher) |
2219 | : result_description_(result_description), |
2220 | callable_(std::move(callable)), |
2221 | matcher_(std::move(matcher)) { |
2222 | CallableTraits<Callable>::CheckIsValid(callable_); |
2223 | } |
2224 | |
2225 | template <typename T> |
2226 | operator Matcher<T>() const { |
2227 | return Matcher<T>( |
2228 | new Impl<const T&>(result_description_, callable_, matcher_)); |
2229 | } |
2230 | |
2231 | private: |
2232 | typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
2233 | |
2234 | template <typename T> |
2235 | class Impl : public MatcherInterface<T> { |
2236 | using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
2237 | std::declval<CallableStorageType>(), std::declval<T>())); |
2238 | |
2239 | public: |
2240 | template <typename M> |
2241 | Impl(const std::string& result_description, |
2242 | const CallableStorageType& callable, const M& matcher) |
2243 | : result_description_(result_description), |
2244 | callable_(callable), |
2245 | matcher_(MatcherCast<ResultType>(matcher)) {} |
2246 | |
2247 | void DescribeTo(::std::ostream* os) const override { |
2248 | if (result_description_.empty()) { |
2249 | *os << "is mapped by the given callable to a value that " ; |
2250 | } else { |
2251 | *os << "whose " << result_description_ << " " ; |
2252 | } |
2253 | matcher_.DescribeTo(os); |
2254 | } |
2255 | |
2256 | void DescribeNegationTo(::std::ostream* os) const override { |
2257 | if (result_description_.empty()) { |
2258 | *os << "is mapped by the given callable to a value that " ; |
2259 | } else { |
2260 | *os << "whose " << result_description_ << " " ; |
2261 | } |
2262 | matcher_.DescribeNegationTo(os); |
2263 | } |
2264 | |
2265 | bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
2266 | if (result_description_.empty()) { |
2267 | *listener << "which is mapped by the given callable to " ; |
2268 | } else { |
2269 | *listener << "whose " << result_description_ << " is " ; |
2270 | } |
2271 | // Cannot pass the return value directly to MatchPrintAndExplain, which |
2272 | // takes a non-const reference as argument. |
2273 | // Also, specifying template argument explicitly is needed because T could |
2274 | // be a non-const reference (e.g. Matcher<Uncopyable&>). |
2275 | ResultType result = |
2276 | CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
2277 | return MatchPrintAndExplain(result, matcher_, listener); |
2278 | } |
2279 | |
2280 | private: |
2281 | const std::string result_description_; |
2282 | // Functors often define operator() as non-const method even though |
2283 | // they are actually stateless. But we need to use them even when |
2284 | // 'this' is a const pointer. It's the user's responsibility not to |
2285 | // use stateful callables with ResultOf(), which doesn't guarantee |
2286 | // how many times the callable will be invoked. |
2287 | mutable CallableStorageType callable_; |
2288 | const Matcher<ResultType> matcher_; |
2289 | }; // class Impl |
2290 | |
2291 | const std::string result_description_; |
2292 | const CallableStorageType callable_; |
2293 | const InnerMatcher matcher_; |
2294 | }; |
2295 | |
2296 | // Implements a matcher that checks the size of an STL-style container. |
2297 | template <typename SizeMatcher> |
2298 | class SizeIsMatcher { |
2299 | public: |
2300 | explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
2301 | : size_matcher_(size_matcher) {} |
2302 | |
2303 | template <typename Container> |
2304 | operator Matcher<Container>() const { |
2305 | return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
2306 | } |
2307 | |
2308 | template <typename Container> |
2309 | class Impl : public MatcherInterface<Container> { |
2310 | public: |
2311 | using SizeType = decltype(std::declval<Container>().size()); |
2312 | explicit Impl(const SizeMatcher& size_matcher) |
2313 | : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
2314 | |
2315 | void DescribeTo(::std::ostream* os) const override { |
2316 | *os << "has a size that " ; |
2317 | size_matcher_.DescribeTo(os); |
2318 | } |
2319 | void DescribeNegationTo(::std::ostream* os) const override { |
2320 | *os << "has a size that " ; |
2321 | size_matcher_.DescribeNegationTo(os); |
2322 | } |
2323 | |
2324 | bool MatchAndExplain(Container container, |
2325 | MatchResultListener* listener) const override { |
2326 | SizeType size = container.size(); |
2327 | StringMatchResultListener size_listener; |
2328 | const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
2329 | *listener << "whose size " << size |
2330 | << (result ? " matches" : " doesn't match" ); |
2331 | PrintIfNotEmpty(explanation: size_listener.str(), os: listener->stream()); |
2332 | return result; |
2333 | } |
2334 | |
2335 | private: |
2336 | const Matcher<SizeType> size_matcher_; |
2337 | }; |
2338 | |
2339 | private: |
2340 | const SizeMatcher size_matcher_; |
2341 | }; |
2342 | |
2343 | // Implements a matcher that checks the begin()..end() distance of an STL-style |
2344 | // container. |
2345 | template <typename DistanceMatcher> |
2346 | class BeginEndDistanceIsMatcher { |
2347 | public: |
2348 | explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
2349 | : distance_matcher_(distance_matcher) {} |
2350 | |
2351 | template <typename Container> |
2352 | operator Matcher<Container>() const { |
2353 | return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
2354 | } |
2355 | |
2356 | template <typename Container> |
2357 | class Impl : public MatcherInterface<Container> { |
2358 | public: |
2359 | typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
2360 | Container)> |
2361 | ContainerView; |
2362 | typedef typename std::iterator_traits< |
2363 | typename ContainerView::type::const_iterator>::difference_type |
2364 | DistanceType; |
2365 | explicit Impl(const DistanceMatcher& distance_matcher) |
2366 | : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
2367 | |
2368 | void DescribeTo(::std::ostream* os) const override { |
2369 | *os << "distance between begin() and end() " ; |
2370 | distance_matcher_.DescribeTo(os); |
2371 | } |
2372 | void DescribeNegationTo(::std::ostream* os) const override { |
2373 | *os << "distance between begin() and end() " ; |
2374 | distance_matcher_.DescribeNegationTo(os); |
2375 | } |
2376 | |
2377 | bool MatchAndExplain(Container container, |
2378 | MatchResultListener* listener) const override { |
2379 | using std::begin; |
2380 | using std::end; |
2381 | DistanceType distance = std::distance(begin(container), end(container)); |
2382 | StringMatchResultListener distance_listener; |
2383 | const bool result = |
2384 | distance_matcher_.MatchAndExplain(distance, &distance_listener); |
2385 | *listener << "whose distance between begin() and end() " << distance |
2386 | << (result ? " matches" : " doesn't match" ); |
2387 | PrintIfNotEmpty(explanation: distance_listener.str(), os: listener->stream()); |
2388 | return result; |
2389 | } |
2390 | |
2391 | private: |
2392 | const Matcher<DistanceType> distance_matcher_; |
2393 | }; |
2394 | |
2395 | private: |
2396 | const DistanceMatcher distance_matcher_; |
2397 | }; |
2398 | |
2399 | // Implements an equality matcher for any STL-style container whose elements |
2400 | // support ==. This matcher is like Eq(), but its failure explanations provide |
2401 | // more detailed information that is useful when the container is used as a set. |
2402 | // The failure message reports elements that are in one of the operands but not |
2403 | // the other. The failure messages do not report duplicate or out-of-order |
2404 | // elements in the containers (which don't properly matter to sets, but can |
2405 | // occur if the containers are vectors or lists, for example). |
2406 | // |
2407 | // Uses the container's const_iterator, value_type, operator ==, |
2408 | // begin(), and end(). |
2409 | template <typename Container> |
2410 | class ContainerEqMatcher { |
2411 | public: |
2412 | typedef internal::StlContainerView<Container> View; |
2413 | typedef typename View::type StlContainer; |
2414 | typedef typename View::const_reference StlContainerReference; |
2415 | |
2416 | static_assert(!std::is_const<Container>::value, |
2417 | "Container type must not be const" ); |
2418 | static_assert(!std::is_reference<Container>::value, |
2419 | "Container type must not be a reference" ); |
2420 | |
2421 | // We make a copy of expected in case the elements in it are modified |
2422 | // after this matcher is created. |
2423 | explicit ContainerEqMatcher(const Container& expected) |
2424 | : expected_(View::Copy(expected)) {} |
2425 | |
2426 | void DescribeTo(::std::ostream* os) const { |
2427 | *os << "equals " ; |
2428 | UniversalPrint(expected_, os); |
2429 | } |
2430 | void DescribeNegationTo(::std::ostream* os) const { |
2431 | *os << "does not equal " ; |
2432 | UniversalPrint(expected_, os); |
2433 | } |
2434 | |
2435 | template <typename LhsContainer> |
2436 | bool MatchAndExplain(const LhsContainer& lhs, |
2437 | MatchResultListener* listener) const { |
2438 | typedef internal::StlContainerView< |
2439 | typename std::remove_const<LhsContainer>::type> |
2440 | LhsView; |
2441 | StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2442 | if (lhs_stl_container == expected_) return true; |
2443 | |
2444 | ::std::ostream* const os = listener->stream(); |
2445 | if (os != nullptr) { |
2446 | // Something is different. Check for extra values first. |
2447 | bool = false; |
2448 | for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end(); |
2449 | ++it) { |
2450 | if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
2451 | expected_.end()) { |
2452 | if (printed_header) { |
2453 | *os << ", " ; |
2454 | } else { |
2455 | *os << "which has these unexpected elements: " ; |
2456 | printed_header = true; |
2457 | } |
2458 | UniversalPrint(*it, os); |
2459 | } |
2460 | } |
2461 | |
2462 | // Now check for missing values. |
2463 | bool = false; |
2464 | for (auto it = expected_.begin(); it != expected_.end(); ++it) { |
2465 | if (internal::ArrayAwareFind(lhs_stl_container.begin(), |
2466 | lhs_stl_container.end(), |
2467 | *it) == lhs_stl_container.end()) { |
2468 | if (printed_header2) { |
2469 | *os << ", " ; |
2470 | } else { |
2471 | *os << (printed_header ? ",\nand" : "which" ) |
2472 | << " doesn't have these expected elements: " ; |
2473 | printed_header2 = true; |
2474 | } |
2475 | UniversalPrint(*it, os); |
2476 | } |
2477 | } |
2478 | } |
2479 | |
2480 | return false; |
2481 | } |
2482 | |
2483 | private: |
2484 | const StlContainer expected_; |
2485 | }; |
2486 | |
2487 | // A comparator functor that uses the < operator to compare two values. |
2488 | struct LessComparator { |
2489 | template <typename T, typename U> |
2490 | bool operator()(const T& lhs, const U& rhs) const { |
2491 | return lhs < rhs; |
2492 | } |
2493 | }; |
2494 | |
2495 | // Implements WhenSortedBy(comparator, container_matcher). |
2496 | template <typename Comparator, typename ContainerMatcher> |
2497 | class WhenSortedByMatcher { |
2498 | public: |
2499 | WhenSortedByMatcher(const Comparator& comparator, |
2500 | const ContainerMatcher& matcher) |
2501 | : comparator_(comparator), matcher_(matcher) {} |
2502 | |
2503 | template <typename LhsContainer> |
2504 | operator Matcher<LhsContainer>() const { |
2505 | return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
2506 | } |
2507 | |
2508 | template <typename LhsContainer> |
2509 | class Impl : public MatcherInterface<LhsContainer> { |
2510 | public: |
2511 | typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
2512 | LhsContainer)> |
2513 | LhsView; |
2514 | typedef typename LhsView::type LhsStlContainer; |
2515 | typedef typename LhsView::const_reference LhsStlContainerReference; |
2516 | // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
2517 | // so that we can match associative containers. |
2518 | typedef |
2519 | typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type |
2520 | LhsValue; |
2521 | |
2522 | Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
2523 | : comparator_(comparator), matcher_(matcher) {} |
2524 | |
2525 | void DescribeTo(::std::ostream* os) const override { |
2526 | *os << "(when sorted) " ; |
2527 | matcher_.DescribeTo(os); |
2528 | } |
2529 | |
2530 | void DescribeNegationTo(::std::ostream* os) const override { |
2531 | *os << "(when sorted) " ; |
2532 | matcher_.DescribeNegationTo(os); |
2533 | } |
2534 | |
2535 | bool MatchAndExplain(LhsContainer lhs, |
2536 | MatchResultListener* listener) const override { |
2537 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2538 | ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
2539 | lhs_stl_container.end()); |
2540 | ::std::sort(sorted_container.begin(), sorted_container.end(), |
2541 | comparator_); |
2542 | |
2543 | if (!listener->IsInterested()) { |
2544 | // If the listener is not interested, we do not need to |
2545 | // construct the inner explanation. |
2546 | return matcher_.Matches(sorted_container); |
2547 | } |
2548 | |
2549 | *listener << "which is " ; |
2550 | UniversalPrint(sorted_container, listener->stream()); |
2551 | *listener << " when sorted" ; |
2552 | |
2553 | StringMatchResultListener inner_listener; |
2554 | const bool match = |
2555 | matcher_.MatchAndExplain(sorted_container, &inner_listener); |
2556 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
2557 | return match; |
2558 | } |
2559 | |
2560 | private: |
2561 | const Comparator comparator_; |
2562 | const Matcher<const ::std::vector<LhsValue>&> matcher_; |
2563 | |
2564 | Impl(const Impl&) = delete; |
2565 | Impl& operator=(const Impl&) = delete; |
2566 | }; |
2567 | |
2568 | private: |
2569 | const Comparator comparator_; |
2570 | const ContainerMatcher matcher_; |
2571 | }; |
2572 | |
2573 | // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
2574 | // must be able to be safely cast to Matcher<std::tuple<const T1&, const |
2575 | // T2&> >, where T1 and T2 are the types of elements in the LHS |
2576 | // container and the RHS container respectively. |
2577 | template <typename TupleMatcher, typename RhsContainer> |
2578 | class PointwiseMatcher { |
2579 | static_assert( |
2580 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
2581 | "use UnorderedPointwise with hash tables" ); |
2582 | |
2583 | public: |
2584 | typedef internal::StlContainerView<RhsContainer> RhsView; |
2585 | typedef typename RhsView::type RhsStlContainer; |
2586 | typedef typename RhsStlContainer::value_type RhsValue; |
2587 | |
2588 | static_assert(!std::is_const<RhsContainer>::value, |
2589 | "RhsContainer type must not be const" ); |
2590 | static_assert(!std::is_reference<RhsContainer>::value, |
2591 | "RhsContainer type must not be a reference" ); |
2592 | |
2593 | // Like ContainerEq, we make a copy of rhs in case the elements in |
2594 | // it are modified after this matcher is created. |
2595 | PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
2596 | : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} |
2597 | |
2598 | template <typename LhsContainer> |
2599 | operator Matcher<LhsContainer>() const { |
2600 | static_assert( |
2601 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
2602 | "use UnorderedPointwise with hash tables" ); |
2603 | |
2604 | return Matcher<LhsContainer>( |
2605 | new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
2606 | } |
2607 | |
2608 | template <typename LhsContainer> |
2609 | class Impl : public MatcherInterface<LhsContainer> { |
2610 | public: |
2611 | typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
2612 | LhsContainer)> |
2613 | LhsView; |
2614 | typedef typename LhsView::type LhsStlContainer; |
2615 | typedef typename LhsView::const_reference LhsStlContainerReference; |
2616 | typedef typename LhsStlContainer::value_type LhsValue; |
2617 | // We pass the LHS value and the RHS value to the inner matcher by |
2618 | // reference, as they may be expensive to copy. We must use tuple |
2619 | // instead of pair here, as a pair cannot hold references (C++ 98, |
2620 | // 20.2.2 [lib.pairs]). |
2621 | typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
2622 | |
2623 | Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
2624 | // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
2625 | : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
2626 | rhs_(rhs) {} |
2627 | |
2628 | void DescribeTo(::std::ostream* os) const override { |
2629 | *os << "contains " << rhs_.size() |
2630 | << " values, where each value and its corresponding value in " ; |
2631 | UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
2632 | *os << " " ; |
2633 | mono_tuple_matcher_.DescribeTo(os); |
2634 | } |
2635 | void DescribeNegationTo(::std::ostream* os) const override { |
2636 | *os << "doesn't contain exactly " << rhs_.size() |
2637 | << " values, or contains a value x at some index i" |
2638 | << " where x and the i-th value of " ; |
2639 | UniversalPrint(rhs_, os); |
2640 | *os << " " ; |
2641 | mono_tuple_matcher_.DescribeNegationTo(os); |
2642 | } |
2643 | |
2644 | bool MatchAndExplain(LhsContainer lhs, |
2645 | MatchResultListener* listener) const override { |
2646 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2647 | const size_t actual_size = lhs_stl_container.size(); |
2648 | if (actual_size != rhs_.size()) { |
2649 | *listener << "which contains " << actual_size << " values" ; |
2650 | return false; |
2651 | } |
2652 | |
2653 | auto left = lhs_stl_container.begin(); |
2654 | auto right = rhs_.begin(); |
2655 | for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
2656 | if (listener->IsInterested()) { |
2657 | StringMatchResultListener inner_listener; |
2658 | // Create InnerMatcherArg as a temporarily object to avoid it outlives |
2659 | // *left and *right. Dereference or the conversion to `const T&` may |
2660 | // return temp objects, e.g. for vector<bool>. |
2661 | if (!mono_tuple_matcher_.MatchAndExplain( |
2662 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
2663 | ImplicitCast_<const RhsValue&>(*right)), |
2664 | &inner_listener)) { |
2665 | *listener << "where the value pair (" ; |
2666 | UniversalPrint(*left, listener->stream()); |
2667 | *listener << ", " ; |
2668 | UniversalPrint(*right, listener->stream()); |
2669 | *listener << ") at index #" << i << " don't match" ; |
2670 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
2671 | return false; |
2672 | } |
2673 | } else { |
2674 | if (!mono_tuple_matcher_.Matches( |
2675 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
2676 | ImplicitCast_<const RhsValue&>(*right)))) |
2677 | return false; |
2678 | } |
2679 | } |
2680 | |
2681 | return true; |
2682 | } |
2683 | |
2684 | private: |
2685 | const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
2686 | const RhsStlContainer rhs_; |
2687 | }; |
2688 | |
2689 | private: |
2690 | const TupleMatcher tuple_matcher_; |
2691 | const RhsStlContainer rhs_; |
2692 | }; |
2693 | |
2694 | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
2695 | template <typename Container> |
2696 | class QuantifierMatcherImpl : public MatcherInterface<Container> { |
2697 | public: |
2698 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
2699 | typedef StlContainerView<RawContainer> View; |
2700 | typedef typename View::type StlContainer; |
2701 | typedef typename View::const_reference StlContainerReference; |
2702 | typedef typename StlContainer::value_type Element; |
2703 | |
2704 | template <typename InnerMatcher> |
2705 | explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
2706 | : inner_matcher_( |
2707 | testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
2708 | |
2709 | // Checks whether: |
2710 | // * All elements in the container match, if all_elements_should_match. |
2711 | // * Any element in the container matches, if !all_elements_should_match. |
2712 | bool MatchAndExplainImpl(bool all_elements_should_match, Container container, |
2713 | MatchResultListener* listener) const { |
2714 | StlContainerReference stl_container = View::ConstReference(container); |
2715 | size_t i = 0; |
2716 | for (auto it = stl_container.begin(); it != stl_container.end(); |
2717 | ++it, ++i) { |
2718 | StringMatchResultListener inner_listener; |
2719 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
2720 | |
2721 | if (matches != all_elements_should_match) { |
2722 | *listener << "whose element #" << i |
2723 | << (matches ? " matches" : " doesn't match" ); |
2724 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
2725 | return !all_elements_should_match; |
2726 | } |
2727 | } |
2728 | return all_elements_should_match; |
2729 | } |
2730 | |
2731 | bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher, |
2732 | Container container, |
2733 | MatchResultListener* listener) const { |
2734 | StlContainerReference stl_container = View::ConstReference(container); |
2735 | size_t i = 0; |
2736 | std::vector<size_t> match_elements; |
2737 | for (auto it = stl_container.begin(); it != stl_container.end(); |
2738 | ++it, ++i) { |
2739 | StringMatchResultListener inner_listener; |
2740 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
2741 | if (matches) { |
2742 | match_elements.push_back(x: i); |
2743 | } |
2744 | } |
2745 | if (listener->IsInterested()) { |
2746 | if (match_elements.empty()) { |
2747 | *listener << "has no element that matches" ; |
2748 | } else if (match_elements.size() == 1) { |
2749 | *listener << "whose element #" << match_elements[0] << " matches" ; |
2750 | } else { |
2751 | *listener << "whose elements (" ; |
2752 | std::string sep = "" ; |
2753 | for (size_t e : match_elements) { |
2754 | *listener << sep << e; |
2755 | sep = ", " ; |
2756 | } |
2757 | *listener << ") match" ; |
2758 | } |
2759 | } |
2760 | StringMatchResultListener count_listener; |
2761 | if (count_matcher.MatchAndExplain(x: match_elements.size(), listener: &count_listener)) { |
2762 | *listener << " and whose match quantity of " << match_elements.size() |
2763 | << " matches" ; |
2764 | PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream()); |
2765 | return true; |
2766 | } else { |
2767 | if (match_elements.empty()) { |
2768 | *listener << " and" ; |
2769 | } else { |
2770 | *listener << " but" ; |
2771 | } |
2772 | *listener << " whose match quantity of " << match_elements.size() |
2773 | << " does not match" ; |
2774 | PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream()); |
2775 | return false; |
2776 | } |
2777 | } |
2778 | |
2779 | protected: |
2780 | const Matcher<const Element&> inner_matcher_; |
2781 | }; |
2782 | |
2783 | // Implements Contains(element_matcher) for the given argument type Container. |
2784 | // Symmetric to EachMatcherImpl. |
2785 | template <typename Container> |
2786 | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
2787 | public: |
2788 | template <typename InnerMatcher> |
2789 | explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
2790 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
2791 | |
2792 | // Describes what this matcher does. |
2793 | void DescribeTo(::std::ostream* os) const override { |
2794 | *os << "contains at least one element that " ; |
2795 | this->inner_matcher_.DescribeTo(os); |
2796 | } |
2797 | |
2798 | void DescribeNegationTo(::std::ostream* os) const override { |
2799 | *os << "doesn't contain any element that " ; |
2800 | this->inner_matcher_.DescribeTo(os); |
2801 | } |
2802 | |
2803 | bool MatchAndExplain(Container container, |
2804 | MatchResultListener* listener) const override { |
2805 | return this->MatchAndExplainImpl(false, container, listener); |
2806 | } |
2807 | }; |
2808 | |
2809 | // Implements Each(element_matcher) for the given argument type Container. |
2810 | // Symmetric to ContainsMatcherImpl. |
2811 | template <typename Container> |
2812 | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
2813 | public: |
2814 | template <typename InnerMatcher> |
2815 | explicit EachMatcherImpl(InnerMatcher inner_matcher) |
2816 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
2817 | |
2818 | // Describes what this matcher does. |
2819 | void DescribeTo(::std::ostream* os) const override { |
2820 | *os << "only contains elements that " ; |
2821 | this->inner_matcher_.DescribeTo(os); |
2822 | } |
2823 | |
2824 | void DescribeNegationTo(::std::ostream* os) const override { |
2825 | *os << "contains some element that " ; |
2826 | this->inner_matcher_.DescribeNegationTo(os); |
2827 | } |
2828 | |
2829 | bool MatchAndExplain(Container container, |
2830 | MatchResultListener* listener) const override { |
2831 | return this->MatchAndExplainImpl(true, container, listener); |
2832 | } |
2833 | }; |
2834 | |
2835 | // Implements Contains(element_matcher).Times(n) for the given argument type |
2836 | // Container. |
2837 | template <typename Container> |
2838 | class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> { |
2839 | public: |
2840 | template <typename InnerMatcher> |
2841 | explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher, |
2842 | Matcher<size_t> count_matcher) |
2843 | : QuantifierMatcherImpl<Container>(inner_matcher), |
2844 | count_matcher_(std::move(count_matcher)) {} |
2845 | |
2846 | void DescribeTo(::std::ostream* os) const override { |
2847 | *os << "quantity of elements that match " ; |
2848 | this->inner_matcher_.DescribeTo(os); |
2849 | *os << " " ; |
2850 | count_matcher_.DescribeTo(os); |
2851 | } |
2852 | |
2853 | void DescribeNegationTo(::std::ostream* os) const override { |
2854 | *os << "quantity of elements that match " ; |
2855 | this->inner_matcher_.DescribeTo(os); |
2856 | *os << " " ; |
2857 | count_matcher_.DescribeNegationTo(os); |
2858 | } |
2859 | |
2860 | bool MatchAndExplain(Container container, |
2861 | MatchResultListener* listener) const override { |
2862 | return this->MatchAndExplainImpl(count_matcher_, container, listener); |
2863 | } |
2864 | |
2865 | private: |
2866 | const Matcher<size_t> count_matcher_; |
2867 | }; |
2868 | |
2869 | // Implements polymorphic Contains(element_matcher).Times(n). |
2870 | template <typename M> |
2871 | class ContainsTimesMatcher { |
2872 | public: |
2873 | explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher) |
2874 | : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {} |
2875 | |
2876 | template <typename Container> |
2877 | operator Matcher<Container>() const { // NOLINT |
2878 | return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>( |
2879 | inner_matcher_, count_matcher_)); |
2880 | } |
2881 | |
2882 | private: |
2883 | const M inner_matcher_; |
2884 | const Matcher<size_t> count_matcher_; |
2885 | }; |
2886 | |
2887 | // Implements polymorphic Contains(element_matcher). |
2888 | template <typename M> |
2889 | class ContainsMatcher { |
2890 | public: |
2891 | explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
2892 | |
2893 | template <typename Container> |
2894 | operator Matcher<Container>() const { // NOLINT |
2895 | return Matcher<Container>( |
2896 | new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
2897 | } |
2898 | |
2899 | ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const { |
2900 | return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher)); |
2901 | } |
2902 | |
2903 | private: |
2904 | const M inner_matcher_; |
2905 | }; |
2906 | |
2907 | // Implements polymorphic Each(element_matcher). |
2908 | template <typename M> |
2909 | class EachMatcher { |
2910 | public: |
2911 | explicit EachMatcher(M m) : inner_matcher_(m) {} |
2912 | |
2913 | template <typename Container> |
2914 | operator Matcher<Container>() const { // NOLINT |
2915 | return Matcher<Container>( |
2916 | new EachMatcherImpl<const Container&>(inner_matcher_)); |
2917 | } |
2918 | |
2919 | private: |
2920 | const M inner_matcher_; |
2921 | }; |
2922 | |
2923 | struct Rank1 {}; |
2924 | struct Rank0 : Rank1 {}; |
2925 | |
2926 | namespace pair_getters { |
2927 | using std::get; |
2928 | template <typename T> |
2929 | auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
2930 | return get<0>(x); |
2931 | } |
2932 | template <typename T> |
2933 | auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
2934 | return x.first; |
2935 | } |
2936 | |
2937 | template <typename T> |
2938 | auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
2939 | return get<1>(x); |
2940 | } |
2941 | template <typename T> |
2942 | auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
2943 | return x.second; |
2944 | } |
2945 | } // namespace pair_getters |
2946 | |
2947 | // Implements Key(inner_matcher) for the given argument pair type. |
2948 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
2949 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
2950 | // std::map that contains at least one element whose key is >= 5. |
2951 | template <typename PairType> |
2952 | class KeyMatcherImpl : public MatcherInterface<PairType> { |
2953 | public: |
2954 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
2955 | typedef typename RawPairType::first_type KeyType; |
2956 | |
2957 | template <typename InnerMatcher> |
2958 | explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
2959 | : inner_matcher_( |
2960 | testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {} |
2961 | |
2962 | // Returns true if and only if 'key_value.first' (the key) matches the inner |
2963 | // matcher. |
2964 | bool MatchAndExplain(PairType key_value, |
2965 | MatchResultListener* listener) const override { |
2966 | StringMatchResultListener inner_listener; |
2967 | const bool match = inner_matcher_.MatchAndExplain( |
2968 | pair_getters::First(key_value, Rank0()), &inner_listener); |
2969 | const std::string explanation = inner_listener.str(); |
2970 | if (!explanation.empty()) { |
2971 | *listener << "whose first field is a value " << explanation; |
2972 | } |
2973 | return match; |
2974 | } |
2975 | |
2976 | // Describes what this matcher does. |
2977 | void DescribeTo(::std::ostream* os) const override { |
2978 | *os << "has a key that " ; |
2979 | inner_matcher_.DescribeTo(os); |
2980 | } |
2981 | |
2982 | // Describes what the negation of this matcher does. |
2983 | void DescribeNegationTo(::std::ostream* os) const override { |
2984 | *os << "doesn't have a key that " ; |
2985 | inner_matcher_.DescribeTo(os); |
2986 | } |
2987 | |
2988 | private: |
2989 | const Matcher<const KeyType&> inner_matcher_; |
2990 | }; |
2991 | |
2992 | // Implements polymorphic Key(matcher_for_key). |
2993 | template <typename M> |
2994 | class KeyMatcher { |
2995 | public: |
2996 | explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
2997 | |
2998 | template <typename PairType> |
2999 | operator Matcher<PairType>() const { |
3000 | return Matcher<PairType>( |
3001 | new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
3002 | } |
3003 | |
3004 | private: |
3005 | const M matcher_for_key_; |
3006 | }; |
3007 | |
3008 | // Implements polymorphic Address(matcher_for_address). |
3009 | template <typename InnerMatcher> |
3010 | class AddressMatcher { |
3011 | public: |
3012 | explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} |
3013 | |
3014 | template <typename Type> |
3015 | operator Matcher<Type>() const { // NOLINT |
3016 | return Matcher<Type>(new Impl<const Type&>(matcher_)); |
3017 | } |
3018 | |
3019 | private: |
3020 | // The monomorphic implementation that works for a particular object type. |
3021 | template <typename Type> |
3022 | class Impl : public MatcherInterface<Type> { |
3023 | public: |
3024 | using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; |
3025 | explicit Impl(const InnerMatcher& matcher) |
3026 | : matcher_(MatcherCast<Address>(matcher)) {} |
3027 | |
3028 | void DescribeTo(::std::ostream* os) const override { |
3029 | *os << "has address that " ; |
3030 | matcher_.DescribeTo(os); |
3031 | } |
3032 | |
3033 | void DescribeNegationTo(::std::ostream* os) const override { |
3034 | *os << "does not have address that " ; |
3035 | matcher_.DescribeTo(os); |
3036 | } |
3037 | |
3038 | bool MatchAndExplain(Type object, |
3039 | MatchResultListener* listener) const override { |
3040 | *listener << "which has address " ; |
3041 | Address address = std::addressof(object); |
3042 | return MatchPrintAndExplain(address, matcher_, listener); |
3043 | } |
3044 | |
3045 | private: |
3046 | const Matcher<Address> matcher_; |
3047 | }; |
3048 | const InnerMatcher matcher_; |
3049 | }; |
3050 | |
3051 | // Implements Pair(first_matcher, second_matcher) for the given argument pair |
3052 | // type with its two matchers. See Pair() function below. |
3053 | template <typename PairType> |
3054 | class PairMatcherImpl : public MatcherInterface<PairType> { |
3055 | public: |
3056 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
3057 | typedef typename RawPairType::first_type FirstType; |
3058 | typedef typename RawPairType::second_type SecondType; |
3059 | |
3060 | template <typename FirstMatcher, typename SecondMatcher> |
3061 | PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
3062 | : first_matcher_( |
3063 | testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
3064 | second_matcher_( |
3065 | testing::SafeMatcherCast<const SecondType&>(second_matcher)) {} |
3066 | |
3067 | // Describes what this matcher does. |
3068 | void DescribeTo(::std::ostream* os) const override { |
3069 | *os << "has a first field that " ; |
3070 | first_matcher_.DescribeTo(os); |
3071 | *os << ", and has a second field that " ; |
3072 | second_matcher_.DescribeTo(os); |
3073 | } |
3074 | |
3075 | // Describes what the negation of this matcher does. |
3076 | void DescribeNegationTo(::std::ostream* os) const override { |
3077 | *os << "has a first field that " ; |
3078 | first_matcher_.DescribeNegationTo(os); |
3079 | *os << ", or has a second field that " ; |
3080 | second_matcher_.DescribeNegationTo(os); |
3081 | } |
3082 | |
3083 | // Returns true if and only if 'a_pair.first' matches first_matcher and |
3084 | // 'a_pair.second' matches second_matcher. |
3085 | bool MatchAndExplain(PairType a_pair, |
3086 | MatchResultListener* listener) const override { |
3087 | if (!listener->IsInterested()) { |
3088 | // If the listener is not interested, we don't need to construct the |
3089 | // explanation. |
3090 | return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
3091 | second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
3092 | } |
3093 | StringMatchResultListener first_inner_listener; |
3094 | if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
3095 | &first_inner_listener)) { |
3096 | *listener << "whose first field does not match" ; |
3097 | PrintIfNotEmpty(explanation: first_inner_listener.str(), os: listener->stream()); |
3098 | return false; |
3099 | } |
3100 | StringMatchResultListener second_inner_listener; |
3101 | if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
3102 | &second_inner_listener)) { |
3103 | *listener << "whose second field does not match" ; |
3104 | PrintIfNotEmpty(explanation: second_inner_listener.str(), os: listener->stream()); |
3105 | return false; |
3106 | } |
3107 | ExplainSuccess(first_explanation: first_inner_listener.str(), second_explanation: second_inner_listener.str(), |
3108 | listener); |
3109 | return true; |
3110 | } |
3111 | |
3112 | private: |
3113 | void ExplainSuccess(const std::string& first_explanation, |
3114 | const std::string& second_explanation, |
3115 | MatchResultListener* listener) const { |
3116 | *listener << "whose both fields match" ; |
3117 | if (!first_explanation.empty()) { |
3118 | *listener << ", where the first field is a value " << first_explanation; |
3119 | } |
3120 | if (!second_explanation.empty()) { |
3121 | *listener << ", " ; |
3122 | if (!first_explanation.empty()) { |
3123 | *listener << "and " ; |
3124 | } else { |
3125 | *listener << "where " ; |
3126 | } |
3127 | *listener << "the second field is a value " << second_explanation; |
3128 | } |
3129 | } |
3130 | |
3131 | const Matcher<const FirstType&> first_matcher_; |
3132 | const Matcher<const SecondType&> second_matcher_; |
3133 | }; |
3134 | |
3135 | // Implements polymorphic Pair(first_matcher, second_matcher). |
3136 | template <typename FirstMatcher, typename SecondMatcher> |
3137 | class PairMatcher { |
3138 | public: |
3139 | PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
3140 | : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
3141 | |
3142 | template <typename PairType> |
3143 | operator Matcher<PairType>() const { |
3144 | return Matcher<PairType>( |
3145 | new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
3146 | } |
3147 | |
3148 | private: |
3149 | const FirstMatcher first_matcher_; |
3150 | const SecondMatcher second_matcher_; |
3151 | }; |
3152 | |
3153 | template <typename T, size_t... I> |
3154 | auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) |
3155 | -> decltype(std::tie(get<I>(t)...)) { |
3156 | static_assert(std::tuple_size<T>::value == sizeof...(I), |
3157 | "Number of arguments doesn't match the number of fields." ); |
3158 | return std::tie(get<I>(t)...); |
3159 | } |
3160 | |
3161 | #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 |
3162 | template <typename T> |
3163 | auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { |
3164 | const auto& [a] = t; |
3165 | return std::tie(a); |
3166 | } |
3167 | template <typename T> |
3168 | auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { |
3169 | const auto& [a, b] = t; |
3170 | return std::tie(a, b); |
3171 | } |
3172 | template <typename T> |
3173 | auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { |
3174 | const auto& [a, b, c] = t; |
3175 | return std::tie(a, b, c); |
3176 | } |
3177 | template <typename T> |
3178 | auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { |
3179 | const auto& [a, b, c, d] = t; |
3180 | return std::tie(a, b, c, d); |
3181 | } |
3182 | template <typename T> |
3183 | auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { |
3184 | const auto& [a, b, c, d, e] = t; |
3185 | return std::tie(a, b, c, d, e); |
3186 | } |
3187 | template <typename T> |
3188 | auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { |
3189 | const auto& [a, b, c, d, e, f] = t; |
3190 | return std::tie(a, b, c, d, e, f); |
3191 | } |
3192 | template <typename T> |
3193 | auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { |
3194 | const auto& [a, b, c, d, e, f, g] = t; |
3195 | return std::tie(a, b, c, d, e, f, g); |
3196 | } |
3197 | template <typename T> |
3198 | auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { |
3199 | const auto& [a, b, c, d, e, f, g, h] = t; |
3200 | return std::tie(a, b, c, d, e, f, g, h); |
3201 | } |
3202 | template <typename T> |
3203 | auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { |
3204 | const auto& [a, b, c, d, e, f, g, h, i] = t; |
3205 | return std::tie(a, b, c, d, e, f, g, h, i); |
3206 | } |
3207 | template <typename T> |
3208 | auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { |
3209 | const auto& [a, b, c, d, e, f, g, h, i, j] = t; |
3210 | return std::tie(a, b, c, d, e, f, g, h, i, j); |
3211 | } |
3212 | template <typename T> |
3213 | auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { |
3214 | const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; |
3215 | return std::tie(a, b, c, d, e, f, g, h, i, j, k); |
3216 | } |
3217 | template <typename T> |
3218 | auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { |
3219 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; |
3220 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); |
3221 | } |
3222 | template <typename T> |
3223 | auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { |
3224 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; |
3225 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); |
3226 | } |
3227 | template <typename T> |
3228 | auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { |
3229 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; |
3230 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); |
3231 | } |
3232 | template <typename T> |
3233 | auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { |
3234 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; |
3235 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); |
3236 | } |
3237 | template <typename T> |
3238 | auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { |
3239 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; |
3240 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); |
3241 | } |
3242 | template <typename T> |
3243 | auto UnpackStructImpl(const T& t, MakeIndexSequence<17>, char) { |
3244 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t; |
3245 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q); |
3246 | } |
3247 | template <typename T> |
3248 | auto UnpackStructImpl(const T& t, MakeIndexSequence<18>, char) { |
3249 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t; |
3250 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r); |
3251 | } |
3252 | template <typename T> |
3253 | auto UnpackStructImpl(const T& t, MakeIndexSequence<19>, char) { |
3254 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t; |
3255 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s); |
3256 | } |
3257 | #endif // defined(__cpp_structured_bindings) |
3258 | |
3259 | template <size_t I, typename T> |
3260 | auto UnpackStruct(const T& t) |
3261 | -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { |
3262 | return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); |
3263 | } |
3264 | |
3265 | // Helper function to do comma folding in C++11. |
3266 | // The array ensures left-to-right order of evaluation. |
3267 | // Usage: VariadicExpand({expr...}); |
3268 | template <typename T, size_t N> |
3269 | void VariadicExpand(const T (&)[N]) {} |
3270 | |
3271 | template <typename Struct, typename StructSize> |
3272 | class FieldsAreMatcherImpl; |
3273 | |
3274 | template <typename Struct, size_t... I> |
3275 | class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> |
3276 | : public MatcherInterface<Struct> { |
3277 | using UnpackedType = |
3278 | decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); |
3279 | using MatchersType = std::tuple< |
3280 | Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; |
3281 | |
3282 | public: |
3283 | template <typename Inner> |
3284 | explicit FieldsAreMatcherImpl(const Inner& matchers) |
3285 | : matchers_(testing::SafeMatcherCast< |
3286 | const typename std::tuple_element<I, UnpackedType>::type&>( |
3287 | std::get<I>(matchers))...) {} |
3288 | |
3289 | void DescribeTo(::std::ostream* os) const override { |
3290 | const char* separator = "" ; |
3291 | VariadicExpand( |
3292 | {(*os << separator << "has field #" << I << " that " , |
3293 | std::get<I>(matchers_).DescribeTo(os), separator = ", and " )...}); |
3294 | } |
3295 | |
3296 | void DescribeNegationTo(::std::ostream* os) const override { |
3297 | const char* separator = "" ; |
3298 | VariadicExpand({(*os << separator << "has field #" << I << " that " , |
3299 | std::get<I>(matchers_).DescribeNegationTo(os), |
3300 | separator = ", or " )...}); |
3301 | } |
3302 | |
3303 | bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { |
3304 | return MatchInternal(tuple: (UnpackStruct<sizeof...(I)>)(t), listener); |
3305 | } |
3306 | |
3307 | private: |
3308 | bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { |
3309 | if (!listener->IsInterested()) { |
3310 | // If the listener is not interested, we don't need to construct the |
3311 | // explanation. |
3312 | bool good = true; |
3313 | VariadicExpand({good = good && std::get<I>(matchers_).Matches( |
3314 | std::get<I>(tuple))...}); |
3315 | return good; |
3316 | } |
3317 | |
3318 | size_t failed_pos = ~size_t{}; |
3319 | |
3320 | std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); |
3321 | |
3322 | VariadicExpand( |
3323 | {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( |
3324 | std::get<I>(tuple), &inner_listener[I]) |
3325 | ? failed_pos = I |
3326 | : 0 ...}); |
3327 | if (failed_pos != ~size_t{}) { |
3328 | *listener << "whose field #" << failed_pos << " does not match" ; |
3329 | PrintIfNotEmpty(explanation: inner_listener[failed_pos].str(), os: listener->stream()); |
3330 | return false; |
3331 | } |
3332 | |
3333 | *listener << "whose all elements match" ; |
3334 | const char* separator = ", where" ; |
3335 | for (size_t index = 0; index < sizeof...(I); ++index) { |
3336 | const std::string str = inner_listener[index].str(); |
3337 | if (!str.empty()) { |
3338 | *listener << separator << " field #" << index << " is a value " << str; |
3339 | separator = ", and" ; |
3340 | } |
3341 | } |
3342 | |
3343 | return true; |
3344 | } |
3345 | |
3346 | MatchersType matchers_; |
3347 | }; |
3348 | |
3349 | template <typename... Inner> |
3350 | class FieldsAreMatcher { |
3351 | public: |
3352 | explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} |
3353 | |
3354 | template <typename Struct> |
3355 | operator Matcher<Struct>() const { // NOLINT |
3356 | return Matcher<Struct>( |
3357 | new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( |
3358 | matchers_)); |
3359 | } |
3360 | |
3361 | private: |
3362 | std::tuple<Inner...> matchers_; |
3363 | }; |
3364 | |
3365 | // Implements ElementsAre() and ElementsAreArray(). |
3366 | template <typename Container> |
3367 | class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
3368 | public: |
3369 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3370 | typedef internal::StlContainerView<RawContainer> View; |
3371 | typedef typename View::type StlContainer; |
3372 | typedef typename View::const_reference StlContainerReference; |
3373 | typedef typename StlContainer::value_type Element; |
3374 | |
3375 | // Constructs the matcher from a sequence of element values or |
3376 | // element matchers. |
3377 | template <typename InputIter> |
3378 | ElementsAreMatcherImpl(InputIter first, InputIter last) { |
3379 | while (first != last) { |
3380 | matchers_.push_back(MatcherCast<const Element&>(*first++)); |
3381 | } |
3382 | } |
3383 | |
3384 | // Describes what this matcher does. |
3385 | void DescribeTo(::std::ostream* os) const override { |
3386 | if (count() == 0) { |
3387 | *os << "is empty" ; |
3388 | } else if (count() == 1) { |
3389 | *os << "has 1 element that " ; |
3390 | matchers_[0].DescribeTo(os); |
3391 | } else { |
3392 | *os << "has " << Elements(count: count()) << " where\n" ; |
3393 | for (size_t i = 0; i != count(); ++i) { |
3394 | *os << "element #" << i << " " ; |
3395 | matchers_[i].DescribeTo(os); |
3396 | if (i + 1 < count()) { |
3397 | *os << ",\n" ; |
3398 | } |
3399 | } |
3400 | } |
3401 | } |
3402 | |
3403 | // Describes what the negation of this matcher does. |
3404 | void DescribeNegationTo(::std::ostream* os) const override { |
3405 | if (count() == 0) { |
3406 | *os << "isn't empty" ; |
3407 | return; |
3408 | } |
3409 | |
3410 | *os << "doesn't have " << Elements(count: count()) << ", or\n" ; |
3411 | for (size_t i = 0; i != count(); ++i) { |
3412 | *os << "element #" << i << " " ; |
3413 | matchers_[i].DescribeNegationTo(os); |
3414 | if (i + 1 < count()) { |
3415 | *os << ", or\n" ; |
3416 | } |
3417 | } |
3418 | } |
3419 | |
3420 | bool MatchAndExplain(Container container, |
3421 | MatchResultListener* listener) const override { |
3422 | // To work with stream-like "containers", we must only walk |
3423 | // through the elements in one pass. |
3424 | |
3425 | const bool listener_interested = listener->IsInterested(); |
3426 | |
3427 | // explanations[i] is the explanation of the element at index i. |
3428 | ::std::vector<std::string> explanations(count()); |
3429 | StlContainerReference stl_container = View::ConstReference(container); |
3430 | auto it = stl_container.begin(); |
3431 | size_t exam_pos = 0; |
3432 | bool mismatch_found = false; // Have we found a mismatched element yet? |
3433 | |
3434 | // Go through the elements and matchers in pairs, until we reach |
3435 | // the end of either the elements or the matchers, or until we find a |
3436 | // mismatch. |
3437 | for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
3438 | bool match; // Does the current element match the current matcher? |
3439 | if (listener_interested) { |
3440 | StringMatchResultListener s; |
3441 | match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
3442 | explanations[exam_pos] = s.str(); |
3443 | } else { |
3444 | match = matchers_[exam_pos].Matches(*it); |
3445 | } |
3446 | |
3447 | if (!match) { |
3448 | mismatch_found = true; |
3449 | break; |
3450 | } |
3451 | } |
3452 | // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
3453 | |
3454 | // Find how many elements the actual container has. We avoid |
3455 | // calling size() s.t. this code works for stream-like "containers" |
3456 | // that don't define size(). |
3457 | size_t actual_count = exam_pos; |
3458 | for (; it != stl_container.end(); ++it) { |
3459 | ++actual_count; |
3460 | } |
3461 | |
3462 | if (actual_count != count()) { |
3463 | // The element count doesn't match. If the container is empty, |
3464 | // there's no need to explain anything as Google Mock already |
3465 | // prints the empty container. Otherwise we just need to show |
3466 | // how many elements there actually are. |
3467 | if (listener_interested && (actual_count != 0)) { |
3468 | *listener << "which has " << Elements(count: actual_count); |
3469 | } |
3470 | return false; |
3471 | } |
3472 | |
3473 | if (mismatch_found) { |
3474 | // The element count matches, but the exam_pos-th element doesn't match. |
3475 | if (listener_interested) { |
3476 | *listener << "whose element #" << exam_pos << " doesn't match" ; |
3477 | PrintIfNotEmpty(explanation: explanations[exam_pos], os: listener->stream()); |
3478 | } |
3479 | return false; |
3480 | } |
3481 | |
3482 | // Every element matches its expectation. We need to explain why |
3483 | // (the obvious ones can be skipped). |
3484 | if (listener_interested) { |
3485 | bool reason_printed = false; |
3486 | for (size_t i = 0; i != count(); ++i) { |
3487 | const std::string& s = explanations[i]; |
3488 | if (!s.empty()) { |
3489 | if (reason_printed) { |
3490 | *listener << ",\nand " ; |
3491 | } |
3492 | *listener << "whose element #" << i << " matches, " << s; |
3493 | reason_printed = true; |
3494 | } |
3495 | } |
3496 | } |
3497 | return true; |
3498 | } |
3499 | |
3500 | private: |
3501 | static Message Elements(size_t count) { |
3502 | return Message() << count << (count == 1 ? " element" : " elements" ); |
3503 | } |
3504 | |
3505 | size_t count() const { return matchers_.size(); } |
3506 | |
3507 | ::std::vector<Matcher<const Element&>> matchers_; |
3508 | }; |
3509 | |
3510 | // Connectivity matrix of (elements X matchers), in element-major order. |
3511 | // Initially, there are no edges. |
3512 | // Use NextGraph() to iterate over all possible edge configurations. |
3513 | // Use Randomize() to generate a random edge configuration. |
3514 | class GTEST_API_ MatchMatrix { |
3515 | public: |
3516 | MatchMatrix(size_t num_elements, size_t num_matchers) |
3517 | : num_elements_(num_elements), |
3518 | num_matchers_(num_matchers), |
3519 | matched_(num_elements_ * num_matchers_, 0) {} |
3520 | |
3521 | size_t LhsSize() const { return num_elements_; } |
3522 | size_t RhsSize() const { return num_matchers_; } |
3523 | bool HasEdge(size_t ilhs, size_t irhs) const { |
3524 | return matched_[SpaceIndex(ilhs, irhs)] == 1; |
3525 | } |
3526 | void SetEdge(size_t ilhs, size_t irhs, bool b) { |
3527 | matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
3528 | } |
3529 | |
3530 | // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
3531 | // adds 1 to that number; returns false if incrementing the graph left it |
3532 | // empty. |
3533 | bool NextGraph(); |
3534 | |
3535 | void Randomize(); |
3536 | |
3537 | std::string DebugString() const; |
3538 | |
3539 | private: |
3540 | size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
3541 | return ilhs * num_matchers_ + irhs; |
3542 | } |
3543 | |
3544 | size_t num_elements_; |
3545 | size_t num_matchers_; |
3546 | |
3547 | // Each element is a char interpreted as bool. They are stored as a |
3548 | // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
3549 | // a (ilhs, irhs) matrix coordinate into an offset. |
3550 | ::std::vector<char> matched_; |
3551 | }; |
3552 | |
3553 | typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
3554 | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
3555 | |
3556 | // Returns a maximum bipartite matching for the specified graph 'g'. |
3557 | // The matching is represented as a vector of {element, matcher} pairs. |
3558 | GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g); |
3559 | |
3560 | struct UnorderedMatcherRequire { |
3561 | enum Flags { |
3562 | Superset = 1 << 0, |
3563 | Subset = 1 << 1, |
3564 | ExactMatch = Superset | Subset, |
3565 | }; |
3566 | }; |
3567 | |
3568 | // Untyped base class for implementing UnorderedElementsAre. By |
3569 | // putting logic that's not specific to the element type here, we |
3570 | // reduce binary bloat and increase compilation speed. |
3571 | class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
3572 | protected: |
3573 | explicit UnorderedElementsAreMatcherImplBase( |
3574 | UnorderedMatcherRequire::Flags matcher_flags) |
3575 | : match_flags_(matcher_flags) {} |
3576 | |
3577 | // A vector of matcher describers, one for each element matcher. |
3578 | // Does not own the describers (and thus can be used only when the |
3579 | // element matchers are alive). |
3580 | typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
3581 | |
3582 | // Describes this UnorderedElementsAre matcher. |
3583 | void DescribeToImpl(::std::ostream* os) const; |
3584 | |
3585 | // Describes the negation of this UnorderedElementsAre matcher. |
3586 | void DescribeNegationToImpl(::std::ostream* os) const; |
3587 | |
3588 | bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
3589 | const MatchMatrix& matrix, |
3590 | MatchResultListener* listener) const; |
3591 | |
3592 | bool FindPairing(const MatchMatrix& matrix, |
3593 | MatchResultListener* listener) const; |
3594 | |
3595 | MatcherDescriberVec& matcher_describers() { return matcher_describers_; } |
3596 | |
3597 | static Message Elements(size_t n) { |
3598 | return Message() << n << " element" << (n == 1 ? "" : "s" ); |
3599 | } |
3600 | |
3601 | UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
3602 | |
3603 | private: |
3604 | UnorderedMatcherRequire::Flags match_flags_; |
3605 | MatcherDescriberVec matcher_describers_; |
3606 | }; |
3607 | |
3608 | // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
3609 | // IsSupersetOf. |
3610 | template <typename Container> |
3611 | class UnorderedElementsAreMatcherImpl |
3612 | : public MatcherInterface<Container>, |
3613 | public UnorderedElementsAreMatcherImplBase { |
3614 | public: |
3615 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3616 | typedef internal::StlContainerView<RawContainer> View; |
3617 | typedef typename View::type StlContainer; |
3618 | typedef typename View::const_reference StlContainerReference; |
3619 | typedef typename StlContainer::value_type Element; |
3620 | |
3621 | template <typename InputIter> |
3622 | UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
3623 | InputIter first, InputIter last) |
3624 | : UnorderedElementsAreMatcherImplBase(matcher_flags) { |
3625 | for (; first != last; ++first) { |
3626 | matchers_.push_back(MatcherCast<const Element&>(*first)); |
3627 | } |
3628 | for (const auto& m : matchers_) { |
3629 | matcher_describers().push_back(m.GetDescriber()); |
3630 | } |
3631 | } |
3632 | |
3633 | // Describes what this matcher does. |
3634 | void DescribeTo(::std::ostream* os) const override { |
3635 | return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
3636 | } |
3637 | |
3638 | // Describes what the negation of this matcher does. |
3639 | void DescribeNegationTo(::std::ostream* os) const override { |
3640 | return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
3641 | } |
3642 | |
3643 | bool MatchAndExplain(Container container, |
3644 | MatchResultListener* listener) const override { |
3645 | StlContainerReference stl_container = View::ConstReference(container); |
3646 | ::std::vector<std::string> element_printouts; |
3647 | MatchMatrix matrix = |
3648 | AnalyzeElements(stl_container.begin(), stl_container.end(), |
3649 | &element_printouts, listener); |
3650 | |
3651 | return VerifyMatchMatrix(element_printouts, matrix, listener) && |
3652 | FindPairing(matrix, listener); |
3653 | } |
3654 | |
3655 | private: |
3656 | template <typename ElementIter> |
3657 | MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
3658 | ::std::vector<std::string>* element_printouts, |
3659 | MatchResultListener* listener) const { |
3660 | element_printouts->clear(); |
3661 | ::std::vector<char> did_match; |
3662 | size_t num_elements = 0; |
3663 | DummyMatchResultListener dummy; |
3664 | for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
3665 | if (listener->IsInterested()) { |
3666 | element_printouts->push_back(PrintToString(*elem_first)); |
3667 | } |
3668 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3669 | did_match.push_back( |
3670 | matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); |
3671 | } |
3672 | } |
3673 | |
3674 | MatchMatrix matrix(num_elements, matchers_.size()); |
3675 | ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
3676 | for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
3677 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3678 | matrix.SetEdge(ilhs, irhs, b: *did_match_iter++ != 0); |
3679 | } |
3680 | } |
3681 | return matrix; |
3682 | } |
3683 | |
3684 | ::std::vector<Matcher<const Element&>> matchers_; |
3685 | }; |
3686 | |
3687 | // Functor for use in TransformTuple. |
3688 | // Performs MatcherCast<Target> on an input argument of any type. |
3689 | template <typename Target> |
3690 | struct CastAndAppendTransform { |
3691 | template <typename Arg> |
3692 | Matcher<Target> operator()(const Arg& a) const { |
3693 | return MatcherCast<Target>(a); |
3694 | } |
3695 | }; |
3696 | |
3697 | // Implements UnorderedElementsAre. |
3698 | template <typename MatcherTuple> |
3699 | class UnorderedElementsAreMatcher { |
3700 | public: |
3701 | explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
3702 | : matchers_(args) {} |
3703 | |
3704 | template <typename Container> |
3705 | operator Matcher<Container>() const { |
3706 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3707 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3708 | typedef typename View::value_type Element; |
3709 | typedef ::std::vector<Matcher<const Element&>> MatcherVec; |
3710 | MatcherVec matchers; |
3711 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
3712 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3713 | ::std::back_inserter(matchers)); |
3714 | return Matcher<Container>( |
3715 | new UnorderedElementsAreMatcherImpl<const Container&>( |
3716 | UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
3717 | matchers.end())); |
3718 | } |
3719 | |
3720 | private: |
3721 | const MatcherTuple matchers_; |
3722 | }; |
3723 | |
3724 | // Implements ElementsAre. |
3725 | template <typename MatcherTuple> |
3726 | class ElementsAreMatcher { |
3727 | public: |
3728 | explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
3729 | |
3730 | template <typename Container> |
3731 | operator Matcher<Container>() const { |
3732 | static_assert( |
3733 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
3734 | ::std::tuple_size<MatcherTuple>::value < 2, |
3735 | "use UnorderedElementsAre with hash tables" ); |
3736 | |
3737 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3738 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3739 | typedef typename View::value_type Element; |
3740 | typedef ::std::vector<Matcher<const Element&>> MatcherVec; |
3741 | MatcherVec matchers; |
3742 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
3743 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3744 | ::std::back_inserter(matchers)); |
3745 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
3746 | matchers.begin(), matchers.end())); |
3747 | } |
3748 | |
3749 | private: |
3750 | const MatcherTuple matchers_; |
3751 | }; |
3752 | |
3753 | // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
3754 | template <typename T> |
3755 | class UnorderedElementsAreArrayMatcher { |
3756 | public: |
3757 | template <typename Iter> |
3758 | UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
3759 | Iter first, Iter last) |
3760 | : match_flags_(match_flags), matchers_(first, last) {} |
3761 | |
3762 | template <typename Container> |
3763 | operator Matcher<Container>() const { |
3764 | return Matcher<Container>( |
3765 | new UnorderedElementsAreMatcherImpl<const Container&>( |
3766 | match_flags_, matchers_.begin(), matchers_.end())); |
3767 | } |
3768 | |
3769 | private: |
3770 | UnorderedMatcherRequire::Flags match_flags_; |
3771 | ::std::vector<T> matchers_; |
3772 | }; |
3773 | |
3774 | // Implements ElementsAreArray(). |
3775 | template <typename T> |
3776 | class ElementsAreArrayMatcher { |
3777 | public: |
3778 | template <typename Iter> |
3779 | ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
3780 | |
3781 | template <typename Container> |
3782 | operator Matcher<Container>() const { |
3783 | static_assert( |
3784 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
3785 | "use UnorderedElementsAreArray with hash tables" ); |
3786 | |
3787 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
3788 | matchers_.begin(), matchers_.end())); |
3789 | } |
3790 | |
3791 | private: |
3792 | const ::std::vector<T> matchers_; |
3793 | }; |
3794 | |
3795 | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
3796 | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
3797 | // second) is a polymorphic matcher that matches a value x if and only if |
3798 | // tm matches tuple (x, second). Useful for implementing |
3799 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
3800 | // |
3801 | // BoundSecondMatcher is copyable and assignable, as we need to put |
3802 | // instances of this class in a vector when implementing |
3803 | // UnorderedPointwise(). |
3804 | template <typename Tuple2Matcher, typename Second> |
3805 | class BoundSecondMatcher { |
3806 | public: |
3807 | BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
3808 | : tuple2_matcher_(tm), second_value_(second) {} |
3809 | |
3810 | BoundSecondMatcher(const BoundSecondMatcher& other) = default; |
3811 | |
3812 | template <typename T> |
3813 | operator Matcher<T>() const { |
3814 | return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
3815 | } |
3816 | |
3817 | // We have to define this for UnorderedPointwise() to compile in |
3818 | // C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
3819 | // which requires the elements to be assignable in C++98. The |
3820 | // compiler cannot generate the operator= for us, as Tuple2Matcher |
3821 | // and Second may not be assignable. |
3822 | // |
3823 | // However, this should never be called, so the implementation just |
3824 | // need to assert. |
3825 | void operator=(const BoundSecondMatcher& /*rhs*/) { |
3826 | GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned." ; |
3827 | } |
3828 | |
3829 | private: |
3830 | template <typename T> |
3831 | class Impl : public MatcherInterface<T> { |
3832 | public: |
3833 | typedef ::std::tuple<T, Second> ArgTuple; |
3834 | |
3835 | Impl(const Tuple2Matcher& tm, const Second& second) |
3836 | : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
3837 | second_value_(second) {} |
3838 | |
3839 | void DescribeTo(::std::ostream* os) const override { |
3840 | *os << "and " ; |
3841 | UniversalPrint(second_value_, os); |
3842 | *os << " " ; |
3843 | mono_tuple2_matcher_.DescribeTo(os); |
3844 | } |
3845 | |
3846 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
3847 | return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
3848 | listener); |
3849 | } |
3850 | |
3851 | private: |
3852 | const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
3853 | const Second second_value_; |
3854 | }; |
3855 | |
3856 | const Tuple2Matcher tuple2_matcher_; |
3857 | const Second second_value_; |
3858 | }; |
3859 | |
3860 | // Given a 2-tuple matcher tm and a value second, |
3861 | // MatcherBindSecond(tm, second) returns a matcher that matches a |
3862 | // value x if and only if tm matches tuple (x, second). Useful for |
3863 | // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
3864 | template <typename Tuple2Matcher, typename Second> |
3865 | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
3866 | const Tuple2Matcher& tm, const Second& second) { |
3867 | return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
3868 | } |
3869 | |
3870 | // Returns the description for a matcher defined using the MATCHER*() |
3871 | // macro where the user-supplied description string is "", if |
3872 | // 'negation' is false; otherwise returns the description of the |
3873 | // negation of the matcher. 'param_values' contains a list of strings |
3874 | // that are the print-out of the matcher's parameters. |
3875 | GTEST_API_ std::string FormatMatcherDescription( |
3876 | bool negation, const char* matcher_name, |
3877 | const std::vector<const char*>& param_names, const Strings& param_values); |
3878 | |
3879 | // Implements a matcher that checks the value of a optional<> type variable. |
3880 | template <typename ValueMatcher> |
3881 | class OptionalMatcher { |
3882 | public: |
3883 | explicit OptionalMatcher(const ValueMatcher& value_matcher) |
3884 | : value_matcher_(value_matcher) {} |
3885 | |
3886 | template <typename Optional> |
3887 | operator Matcher<Optional>() const { |
3888 | return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
3889 | } |
3890 | |
3891 | template <typename Optional> |
3892 | class Impl : public MatcherInterface<Optional> { |
3893 | public: |
3894 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
3895 | typedef typename OptionalView::value_type ValueType; |
3896 | explicit Impl(const ValueMatcher& value_matcher) |
3897 | : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
3898 | |
3899 | void DescribeTo(::std::ostream* os) const override { |
3900 | *os << "value " ; |
3901 | value_matcher_.DescribeTo(os); |
3902 | } |
3903 | |
3904 | void DescribeNegationTo(::std::ostream* os) const override { |
3905 | *os << "value " ; |
3906 | value_matcher_.DescribeNegationTo(os); |
3907 | } |
3908 | |
3909 | bool MatchAndExplain(Optional optional, |
3910 | MatchResultListener* listener) const override { |
3911 | if (!optional) { |
3912 | *listener << "which is not engaged" ; |
3913 | return false; |
3914 | } |
3915 | const ValueType& value = *optional; |
3916 | StringMatchResultListener value_listener; |
3917 | const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
3918 | *listener << "whose value " << PrintToString(value) |
3919 | << (match ? " matches" : " doesn't match" ); |
3920 | PrintIfNotEmpty(explanation: value_listener.str(), os: listener->stream()); |
3921 | return match; |
3922 | } |
3923 | |
3924 | private: |
3925 | const Matcher<ValueType> value_matcher_; |
3926 | }; |
3927 | |
3928 | private: |
3929 | const ValueMatcher value_matcher_; |
3930 | }; |
3931 | |
3932 | namespace variant_matcher { |
3933 | // Overloads to allow VariantMatcher to do proper ADL lookup. |
3934 | template <typename T> |
3935 | void holds_alternative() {} |
3936 | template <typename T> |
3937 | void get() {} |
3938 | |
3939 | // Implements a matcher that checks the value of a variant<> type variable. |
3940 | template <typename T> |
3941 | class VariantMatcher { |
3942 | public: |
3943 | explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
3944 | : matcher_(std::move(matcher)) {} |
3945 | |
3946 | template <typename Variant> |
3947 | bool MatchAndExplain(const Variant& value, |
3948 | ::testing::MatchResultListener* listener) const { |
3949 | using std::get; |
3950 | if (!listener->IsInterested()) { |
3951 | return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
3952 | } |
3953 | |
3954 | if (!holds_alternative<T>(value)) { |
3955 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
3956 | return false; |
3957 | } |
3958 | |
3959 | const T& elem = get<T>(value); |
3960 | StringMatchResultListener elem_listener; |
3961 | const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
3962 | *listener << "whose value " << PrintToString(elem) |
3963 | << (match ? " matches" : " doesn't match" ); |
3964 | PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream()); |
3965 | return match; |
3966 | } |
3967 | |
3968 | void DescribeTo(std::ostream* os) const { |
3969 | *os << "is a variant<> with value of type '" << GetTypeName() |
3970 | << "' and the value " ; |
3971 | matcher_.DescribeTo(os); |
3972 | } |
3973 | |
3974 | void DescribeNegationTo(std::ostream* os) const { |
3975 | *os << "is a variant<> with value of type other than '" << GetTypeName() |
3976 | << "' or the value " ; |
3977 | matcher_.DescribeNegationTo(os); |
3978 | } |
3979 | |
3980 | private: |
3981 | static std::string GetTypeName() { |
3982 | #if GTEST_HAS_RTTI |
3983 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
3984 | return internal::GetTypeName<T>()); |
3985 | #endif |
3986 | return "the element type" ; |
3987 | } |
3988 | |
3989 | const ::testing::Matcher<const T&> matcher_; |
3990 | }; |
3991 | |
3992 | } // namespace variant_matcher |
3993 | |
3994 | namespace any_cast_matcher { |
3995 | |
3996 | // Overloads to allow AnyCastMatcher to do proper ADL lookup. |
3997 | template <typename T> |
3998 | void any_cast() {} |
3999 | |
4000 | // Implements a matcher that any_casts the value. |
4001 | template <typename T> |
4002 | class AnyCastMatcher { |
4003 | public: |
4004 | explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
4005 | : matcher_(matcher) {} |
4006 | |
4007 | template <typename AnyType> |
4008 | bool MatchAndExplain(const AnyType& value, |
4009 | ::testing::MatchResultListener* listener) const { |
4010 | if (!listener->IsInterested()) { |
4011 | const T* ptr = any_cast<T>(&value); |
4012 | return ptr != nullptr && matcher_.Matches(*ptr); |
4013 | } |
4014 | |
4015 | const T* elem = any_cast<T>(&value); |
4016 | if (elem == nullptr) { |
4017 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
4018 | return false; |
4019 | } |
4020 | |
4021 | StringMatchResultListener elem_listener; |
4022 | const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
4023 | *listener << "whose value " << PrintToString(*elem) |
4024 | << (match ? " matches" : " doesn't match" ); |
4025 | PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream()); |
4026 | return match; |
4027 | } |
4028 | |
4029 | void DescribeTo(std::ostream* os) const { |
4030 | *os << "is an 'any' type with value of type '" << GetTypeName() |
4031 | << "' and the value " ; |
4032 | matcher_.DescribeTo(os); |
4033 | } |
4034 | |
4035 | void DescribeNegationTo(std::ostream* os) const { |
4036 | *os << "is an 'any' type with value of type other than '" << GetTypeName() |
4037 | << "' or the value " ; |
4038 | matcher_.DescribeNegationTo(os); |
4039 | } |
4040 | |
4041 | private: |
4042 | static std::string GetTypeName() { |
4043 | #if GTEST_HAS_RTTI |
4044 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
4045 | return internal::GetTypeName<T>()); |
4046 | #endif |
4047 | return "the element type" ; |
4048 | } |
4049 | |
4050 | const ::testing::Matcher<const T&> matcher_; |
4051 | }; |
4052 | |
4053 | } // namespace any_cast_matcher |
4054 | |
4055 | // Implements the Args() matcher. |
4056 | template <class ArgsTuple, size_t... k> |
4057 | class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
4058 | public: |
4059 | using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
4060 | using SelectedArgs = |
4061 | std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
4062 | using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
4063 | |
4064 | template <typename InnerMatcher> |
4065 | explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
4066 | : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
4067 | |
4068 | bool MatchAndExplain(ArgsTuple args, |
4069 | MatchResultListener* listener) const override { |
4070 | // Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
4071 | (void)args; |
4072 | const SelectedArgs& selected_args = |
4073 | std::forward_as_tuple(std::get<k>(args)...); |
4074 | if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
4075 | |
4076 | PrintIndices(os: listener->stream()); |
4077 | *listener << "are " << PrintToString(selected_args); |
4078 | |
4079 | StringMatchResultListener inner_listener; |
4080 | const bool match = |
4081 | inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
4082 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
4083 | return match; |
4084 | } |
4085 | |
4086 | void DescribeTo(::std::ostream* os) const override { |
4087 | *os << "are a tuple " ; |
4088 | PrintIndices(os); |
4089 | inner_matcher_.DescribeTo(os); |
4090 | } |
4091 | |
4092 | void DescribeNegationTo(::std::ostream* os) const override { |
4093 | *os << "are a tuple " ; |
4094 | PrintIndices(os); |
4095 | inner_matcher_.DescribeNegationTo(os); |
4096 | } |
4097 | |
4098 | private: |
4099 | // Prints the indices of the selected fields. |
4100 | static void PrintIndices(::std::ostream* os) { |
4101 | *os << "whose fields (" ; |
4102 | const char* sep = "" ; |
4103 | // Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
4104 | (void)sep; |
4105 | // The static_cast to void is needed to silence Clang's -Wcomma warning. |
4106 | // This pattern looks suspiciously like we may have mismatched parentheses |
4107 | // and may have been trying to use the first operation of the comma operator |
4108 | // as a member of the array, so Clang warns that we may have made a mistake. |
4109 | const char* dummy[] = { |
4110 | "" , (static_cast<void>(*os << sep << "#" << k), sep = ", " )...}; |
4111 | (void)dummy; |
4112 | *os << ") " ; |
4113 | } |
4114 | |
4115 | MonomorphicInnerMatcher inner_matcher_; |
4116 | }; |
4117 | |
4118 | template <class InnerMatcher, size_t... k> |
4119 | class ArgsMatcher { |
4120 | public: |
4121 | explicit ArgsMatcher(InnerMatcher inner_matcher) |
4122 | : inner_matcher_(std::move(inner_matcher)) {} |
4123 | |
4124 | template <typename ArgsTuple> |
4125 | operator Matcher<ArgsTuple>() const { // NOLINT |
4126 | return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
4127 | } |
4128 | |
4129 | private: |
4130 | InnerMatcher inner_matcher_; |
4131 | }; |
4132 | |
4133 | } // namespace internal |
4134 | |
4135 | // ElementsAreArray(iterator_first, iterator_last) |
4136 | // ElementsAreArray(pointer, count) |
4137 | // ElementsAreArray(array) |
4138 | // ElementsAreArray(container) |
4139 | // ElementsAreArray({ e1, e2, ..., en }) |
4140 | // |
4141 | // The ElementsAreArray() functions are like ElementsAre(...), except |
4142 | // that they are given a homogeneous sequence rather than taking each |
4143 | // element as a function argument. The sequence can be specified as an |
4144 | // array, a pointer and count, a vector, an initializer list, or an |
4145 | // STL iterator range. In each of these cases, the underlying sequence |
4146 | // can be either a sequence of values or a sequence of matchers. |
4147 | // |
4148 | // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
4149 | |
4150 | template <typename Iter> |
4151 | inline internal::ElementsAreArrayMatcher< |
4152 | typename ::std::iterator_traits<Iter>::value_type> |
4153 | ElementsAreArray(Iter first, Iter last) { |
4154 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4155 | return internal::ElementsAreArrayMatcher<T>(first, last); |
4156 | } |
4157 | |
4158 | template <typename T> |
4159 | inline auto ElementsAreArray(const T* pointer, size_t count) |
4160 | -> decltype(ElementsAreArray(pointer, pointer + count)) { |
4161 | return ElementsAreArray(pointer, pointer + count); |
4162 | } |
4163 | |
4164 | template <typename T, size_t N> |
4165 | inline auto ElementsAreArray(const T (&array)[N]) |
4166 | -> decltype(ElementsAreArray(array, N)) { |
4167 | return ElementsAreArray(array, N); |
4168 | } |
4169 | |
4170 | template <typename Container> |
4171 | inline auto ElementsAreArray(const Container& container) |
4172 | -> decltype(ElementsAreArray(container.begin(), container.end())) { |
4173 | return ElementsAreArray(container.begin(), container.end()); |
4174 | } |
4175 | |
4176 | template <typename T> |
4177 | inline auto ElementsAreArray(::std::initializer_list<T> xs) |
4178 | -> decltype(ElementsAreArray(xs.begin(), xs.end())) { |
4179 | return ElementsAreArray(xs.begin(), xs.end()); |
4180 | } |
4181 | |
4182 | // UnorderedElementsAreArray(iterator_first, iterator_last) |
4183 | // UnorderedElementsAreArray(pointer, count) |
4184 | // UnorderedElementsAreArray(array) |
4185 | // UnorderedElementsAreArray(container) |
4186 | // UnorderedElementsAreArray({ e1, e2, ..., en }) |
4187 | // |
4188 | // UnorderedElementsAreArray() verifies that a bijective mapping onto a |
4189 | // collection of matchers exists. |
4190 | // |
4191 | // The matchers can be specified as an array, a pointer and count, a container, |
4192 | // an initializer list, or an STL iterator range. In each of these cases, the |
4193 | // underlying matchers can be either values or matchers. |
4194 | |
4195 | template <typename Iter> |
4196 | inline internal::UnorderedElementsAreArrayMatcher< |
4197 | typename ::std::iterator_traits<Iter>::value_type> |
4198 | UnorderedElementsAreArray(Iter first, Iter last) { |
4199 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4200 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4201 | internal::UnorderedMatcherRequire::ExactMatch, first, last); |
4202 | } |
4203 | |
4204 | template <typename T> |
4205 | inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
4206 | const T* pointer, size_t count) { |
4207 | return UnorderedElementsAreArray(pointer, pointer + count); |
4208 | } |
4209 | |
4210 | template <typename T, size_t N> |
4211 | inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
4212 | const T (&array)[N]) { |
4213 | return UnorderedElementsAreArray(array, N); |
4214 | } |
4215 | |
4216 | template <typename Container> |
4217 | inline internal::UnorderedElementsAreArrayMatcher< |
4218 | typename Container::value_type> |
4219 | UnorderedElementsAreArray(const Container& container) { |
4220 | return UnorderedElementsAreArray(container.begin(), container.end()); |
4221 | } |
4222 | |
4223 | template <typename T> |
4224 | inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
4225 | ::std::initializer_list<T> xs) { |
4226 | return UnorderedElementsAreArray(xs.begin(), xs.end()); |
4227 | } |
4228 | |
4229 | // _ is a matcher that matches anything of any type. |
4230 | // |
4231 | // This definition is fine as: |
4232 | // |
4233 | // 1. The C++ standard permits using the name _ in a namespace that |
4234 | // is not the global namespace or ::std. |
4235 | // 2. The AnythingMatcher class has no data member or constructor, |
4236 | // so it's OK to create global variables of this type. |
4237 | // 3. c-style has approved of using _ in this case. |
4238 | const internal::AnythingMatcher _ = {}; |
4239 | // Creates a matcher that matches any value of the given type T. |
4240 | template <typename T> |
4241 | inline Matcher<T> A() { |
4242 | return _; |
4243 | } |
4244 | |
4245 | // Creates a matcher that matches any value of the given type T. |
4246 | template <typename T> |
4247 | inline Matcher<T> An() { |
4248 | return _; |
4249 | } |
4250 | |
4251 | template <typename T, typename M> |
4252 | Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
4253 | const M& value, std::false_type /* convertible_to_matcher */, |
4254 | std::false_type /* convertible_to_T */) { |
4255 | return Eq(value); |
4256 | } |
4257 | |
4258 | // Creates a polymorphic matcher that matches any NULL pointer. |
4259 | inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() { |
4260 | return MakePolymorphicMatcher(impl: internal::IsNullMatcher()); |
4261 | } |
4262 | |
4263 | // Creates a polymorphic matcher that matches any non-NULL pointer. |
4264 | // This is convenient as Not(NULL) doesn't compile (the compiler |
4265 | // thinks that that expression is comparing a pointer with an integer). |
4266 | inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() { |
4267 | return MakePolymorphicMatcher(impl: internal::NotNullMatcher()); |
4268 | } |
4269 | |
4270 | // Creates a polymorphic matcher that matches any argument that |
4271 | // references variable x. |
4272 | template <typename T> |
4273 | inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
4274 | return internal::RefMatcher<T&>(x); |
4275 | } |
4276 | |
4277 | // Creates a polymorphic matcher that matches any NaN floating point. |
4278 | inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { |
4279 | return MakePolymorphicMatcher(impl: internal::IsNanMatcher()); |
4280 | } |
4281 | |
4282 | // Creates a matcher that matches any double argument approximately |
4283 | // equal to rhs, where two NANs are considered unequal. |
4284 | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
4285 | return internal::FloatingEqMatcher<double>(rhs, false); |
4286 | } |
4287 | |
4288 | // Creates a matcher that matches any double argument approximately |
4289 | // equal to rhs, including NaN values when rhs is NaN. |
4290 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
4291 | return internal::FloatingEqMatcher<double>(rhs, true); |
4292 | } |
4293 | |
4294 | // Creates a matcher that matches any double argument approximately equal to |
4295 | // rhs, up to the specified max absolute error bound, where two NANs are |
4296 | // considered unequal. The max absolute error bound must be non-negative. |
4297 | inline internal::FloatingEqMatcher<double> DoubleNear(double rhs, |
4298 | double max_abs_error) { |
4299 | return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
4300 | } |
4301 | |
4302 | // Creates a matcher that matches any double argument approximately equal to |
4303 | // rhs, up to the specified max absolute error bound, including NaN values when |
4304 | // rhs is NaN. The max absolute error bound must be non-negative. |
4305 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
4306 | double rhs, double max_abs_error) { |
4307 | return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
4308 | } |
4309 | |
4310 | // Creates a matcher that matches any float argument approximately |
4311 | // equal to rhs, where two NANs are considered unequal. |
4312 | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
4313 | return internal::FloatingEqMatcher<float>(rhs, false); |
4314 | } |
4315 | |
4316 | // Creates a matcher that matches any float argument approximately |
4317 | // equal to rhs, including NaN values when rhs is NaN. |
4318 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
4319 | return internal::FloatingEqMatcher<float>(rhs, true); |
4320 | } |
4321 | |
4322 | // Creates a matcher that matches any float argument approximately equal to |
4323 | // rhs, up to the specified max absolute error bound, where two NANs are |
4324 | // considered unequal. The max absolute error bound must be non-negative. |
4325 | inline internal::FloatingEqMatcher<float> FloatNear(float rhs, |
4326 | float max_abs_error) { |
4327 | return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
4328 | } |
4329 | |
4330 | // Creates a matcher that matches any float argument approximately equal to |
4331 | // rhs, up to the specified max absolute error bound, including NaN values when |
4332 | // rhs is NaN. The max absolute error bound must be non-negative. |
4333 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
4334 | float rhs, float max_abs_error) { |
4335 | return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
4336 | } |
4337 | |
4338 | // Creates a matcher that matches a pointer (raw or smart) that points |
4339 | // to a value that matches inner_matcher. |
4340 | template <typename InnerMatcher> |
4341 | inline internal::PointeeMatcher<InnerMatcher> Pointee( |
4342 | const InnerMatcher& inner_matcher) { |
4343 | return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
4344 | } |
4345 | |
4346 | #if GTEST_HAS_RTTI |
4347 | // Creates a matcher that matches a pointer or reference that matches |
4348 | // inner_matcher when dynamic_cast<To> is applied. |
4349 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
4350 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
4351 | // If To is a reference and the cast fails, this matcher returns false |
4352 | // immediately. |
4353 | template <typename To> |
4354 | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>> |
4355 | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
4356 | return MakePolymorphicMatcher( |
4357 | internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
4358 | } |
4359 | #endif // GTEST_HAS_RTTI |
4360 | |
4361 | // Creates a matcher that matches an object whose given field matches |
4362 | // 'matcher'. For example, |
4363 | // Field(&Foo::number, Ge(5)) |
4364 | // matches a Foo object x if and only if x.number >= 5. |
4365 | template <typename Class, typename FieldType, typename FieldMatcher> |
4366 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( |
4367 | FieldType Class::*field, const FieldMatcher& matcher) { |
4368 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
4369 | field, MatcherCast<const FieldType&>(matcher))); |
4370 | // The call to MatcherCast() is required for supporting inner |
4371 | // matchers of compatible types. For example, it allows |
4372 | // Field(&Foo::bar, m) |
4373 | // to compile where bar is an int32 and m is a matcher for int64. |
4374 | } |
4375 | |
4376 | // Same as Field() but also takes the name of the field to provide better error |
4377 | // messages. |
4378 | template <typename Class, typename FieldType, typename FieldMatcher> |
4379 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( |
4380 | const std::string& field_name, FieldType Class::*field, |
4381 | const FieldMatcher& matcher) { |
4382 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
4383 | field_name, field, MatcherCast<const FieldType&>(matcher))); |
4384 | } |
4385 | |
4386 | // Creates a matcher that matches an object whose given property |
4387 | // matches 'matcher'. For example, |
4388 | // Property(&Foo::str, StartsWith("hi")) |
4389 | // matches a Foo object x if and only if x.str() starts with "hi". |
4390 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4391 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4392 | Class, PropertyType, PropertyType (Class::*)() const>> |
4393 | Property(PropertyType (Class::*property)() const, |
4394 | const PropertyMatcher& matcher) { |
4395 | return MakePolymorphicMatcher( |
4396 | internal::PropertyMatcher<Class, PropertyType, |
4397 | PropertyType (Class::*)() const>( |
4398 | property, MatcherCast<const PropertyType&>(matcher))); |
4399 | // The call to MatcherCast() is required for supporting inner |
4400 | // matchers of compatible types. For example, it allows |
4401 | // Property(&Foo::bar, m) |
4402 | // to compile where bar() returns an int32 and m is a matcher for int64. |
4403 | } |
4404 | |
4405 | // Same as Property() above, but also takes the name of the property to provide |
4406 | // better error messages. |
4407 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4408 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4409 | Class, PropertyType, PropertyType (Class::*)() const>> |
4410 | Property(const std::string& property_name, |
4411 | PropertyType (Class::*property)() const, |
4412 | const PropertyMatcher& matcher) { |
4413 | return MakePolymorphicMatcher( |
4414 | internal::PropertyMatcher<Class, PropertyType, |
4415 | PropertyType (Class::*)() const>( |
4416 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
4417 | } |
4418 | |
4419 | // The same as above but for reference-qualified member functions. |
4420 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4421 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4422 | Class, PropertyType, PropertyType (Class::*)() const&>> |
4423 | Property(PropertyType (Class::*property)() const&, |
4424 | const PropertyMatcher& matcher) { |
4425 | return MakePolymorphicMatcher( |
4426 | internal::PropertyMatcher<Class, PropertyType, |
4427 | PropertyType (Class::*)() const&>( |
4428 | property, MatcherCast<const PropertyType&>(matcher))); |
4429 | } |
4430 | |
4431 | // Three-argument form for reference-qualified member functions. |
4432 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4433 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4434 | Class, PropertyType, PropertyType (Class::*)() const&>> |
4435 | Property(const std::string& property_name, |
4436 | PropertyType (Class::*property)() const&, |
4437 | const PropertyMatcher& matcher) { |
4438 | return MakePolymorphicMatcher( |
4439 | internal::PropertyMatcher<Class, PropertyType, |
4440 | PropertyType (Class::*)() const&>( |
4441 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
4442 | } |
4443 | |
4444 | // Creates a matcher that matches an object if and only if the result of |
4445 | // applying a callable to x matches 'matcher'. For example, |
4446 | // ResultOf(f, StartsWith("hi")) |
4447 | // matches a Foo object x if and only if f(x) starts with "hi". |
4448 | // `callable` parameter can be a function, function pointer, or a functor. It is |
4449 | // required to keep no state affecting the results of the calls on it and make |
4450 | // no assumptions about how many calls will be made. Any state it keeps must be |
4451 | // protected from the concurrent access. |
4452 | template <typename Callable, typename InnerMatcher> |
4453 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
4454 | Callable callable, InnerMatcher matcher) { |
4455 | return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable), |
4456 | std::move(matcher)); |
4457 | } |
4458 | |
4459 | // Same as ResultOf() above, but also takes a description of the `callable` |
4460 | // result to provide better error messages. |
4461 | template <typename Callable, typename InnerMatcher> |
4462 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
4463 | const std::string& result_description, Callable callable, |
4464 | InnerMatcher matcher) { |
4465 | return internal::ResultOfMatcher<Callable, InnerMatcher>( |
4466 | result_description, std::move(callable), std::move(matcher)); |
4467 | } |
4468 | |
4469 | // String matchers. |
4470 | |
4471 | // Matches a string equal to str. |
4472 | template <typename T = std::string> |
4473 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq( |
4474 | const internal::StringLike<T>& str) { |
4475 | return MakePolymorphicMatcher( |
4476 | impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); |
4477 | } |
4478 | |
4479 | // Matches a string not equal to str. |
4480 | template <typename T = std::string> |
4481 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe( |
4482 | const internal::StringLike<T>& str) { |
4483 | return MakePolymorphicMatcher( |
4484 | impl: internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); |
4485 | } |
4486 | |
4487 | // Matches a string equal to str, ignoring case. |
4488 | template <typename T = std::string> |
4489 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq( |
4490 | const internal::StringLike<T>& str) { |
4491 | return MakePolymorphicMatcher( |
4492 | impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); |
4493 | } |
4494 | |
4495 | // Matches a string not equal to str, ignoring case. |
4496 | template <typename T = std::string> |
4497 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe( |
4498 | const internal::StringLike<T>& str) { |
4499 | return MakePolymorphicMatcher(impl: internal::StrEqualityMatcher<std::string>( |
4500 | std::string(str), false, false)); |
4501 | } |
4502 | |
4503 | // Creates a matcher that matches any string, std::string, or C string |
4504 | // that contains the given substring. |
4505 | template <typename T = std::string> |
4506 | PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr( |
4507 | const internal::StringLike<T>& substring) { |
4508 | return MakePolymorphicMatcher( |
4509 | impl: internal::HasSubstrMatcher<std::string>(std::string(substring))); |
4510 | } |
4511 | |
4512 | // Matches a string that starts with 'prefix' (case-sensitive). |
4513 | template <typename T = std::string> |
4514 | PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith( |
4515 | const internal::StringLike<T>& prefix) { |
4516 | return MakePolymorphicMatcher( |
4517 | impl: internal::StartsWithMatcher<std::string>(std::string(prefix))); |
4518 | } |
4519 | |
4520 | // Matches a string that ends with 'suffix' (case-sensitive). |
4521 | template <typename T = std::string> |
4522 | PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith( |
4523 | const internal::StringLike<T>& suffix) { |
4524 | return MakePolymorphicMatcher( |
4525 | impl: internal::EndsWithMatcher<std::string>(std::string(suffix))); |
4526 | } |
4527 | |
4528 | #if GTEST_HAS_STD_WSTRING |
4529 | // Wide string matchers. |
4530 | |
4531 | // Matches a string equal to str. |
4532 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq( |
4533 | const std::wstring& str) { |
4534 | return MakePolymorphicMatcher( |
4535 | impl: internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
4536 | } |
4537 | |
4538 | // Matches a string not equal to str. |
4539 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe( |
4540 | const std::wstring& str) { |
4541 | return MakePolymorphicMatcher( |
4542 | impl: internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
4543 | } |
4544 | |
4545 | // Matches a string equal to str, ignoring case. |
4546 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq( |
4547 | const std::wstring& str) { |
4548 | return MakePolymorphicMatcher( |
4549 | impl: internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
4550 | } |
4551 | |
4552 | // Matches a string not equal to str, ignoring case. |
4553 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe( |
4554 | const std::wstring& str) { |
4555 | return MakePolymorphicMatcher( |
4556 | impl: internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
4557 | } |
4558 | |
4559 | // Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
4560 | // that contains the given substring. |
4561 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr( |
4562 | const std::wstring& substring) { |
4563 | return MakePolymorphicMatcher( |
4564 | impl: internal::HasSubstrMatcher<std::wstring>(substring)); |
4565 | } |
4566 | |
4567 | // Matches a string that starts with 'prefix' (case-sensitive). |
4568 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith( |
4569 | const std::wstring& prefix) { |
4570 | return MakePolymorphicMatcher( |
4571 | impl: internal::StartsWithMatcher<std::wstring>(prefix)); |
4572 | } |
4573 | |
4574 | // Matches a string that ends with 'suffix' (case-sensitive). |
4575 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith( |
4576 | const std::wstring& suffix) { |
4577 | return MakePolymorphicMatcher( |
4578 | impl: internal::EndsWithMatcher<std::wstring>(suffix)); |
4579 | } |
4580 | |
4581 | #endif // GTEST_HAS_STD_WSTRING |
4582 | |
4583 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4584 | // first field == the second field. |
4585 | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
4586 | |
4587 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4588 | // first field >= the second field. |
4589 | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
4590 | |
4591 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4592 | // first field > the second field. |
4593 | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
4594 | |
4595 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4596 | // first field <= the second field. |
4597 | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
4598 | |
4599 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4600 | // first field < the second field. |
4601 | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
4602 | |
4603 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4604 | // first field != the second field. |
4605 | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
4606 | |
4607 | // Creates a polymorphic matcher that matches a 2-tuple where |
4608 | // FloatEq(first field) matches the second field. |
4609 | inline internal::FloatingEq2Matcher<float> FloatEq() { |
4610 | return internal::FloatingEq2Matcher<float>(); |
4611 | } |
4612 | |
4613 | // Creates a polymorphic matcher that matches a 2-tuple where |
4614 | // DoubleEq(first field) matches the second field. |
4615 | inline internal::FloatingEq2Matcher<double> DoubleEq() { |
4616 | return internal::FloatingEq2Matcher<double>(); |
4617 | } |
4618 | |
4619 | // Creates a polymorphic matcher that matches a 2-tuple where |
4620 | // FloatEq(first field) matches the second field with NaN equality. |
4621 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
4622 | return internal::FloatingEq2Matcher<float>(true); |
4623 | } |
4624 | |
4625 | // Creates a polymorphic matcher that matches a 2-tuple where |
4626 | // DoubleEq(first field) matches the second field with NaN equality. |
4627 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
4628 | return internal::FloatingEq2Matcher<double>(true); |
4629 | } |
4630 | |
4631 | // Creates a polymorphic matcher that matches a 2-tuple where |
4632 | // FloatNear(first field, max_abs_error) matches the second field. |
4633 | inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
4634 | return internal::FloatingEq2Matcher<float>(max_abs_error); |
4635 | } |
4636 | |
4637 | // Creates a polymorphic matcher that matches a 2-tuple where |
4638 | // DoubleNear(first field, max_abs_error) matches the second field. |
4639 | inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
4640 | return internal::FloatingEq2Matcher<double>(max_abs_error); |
4641 | } |
4642 | |
4643 | // Creates a polymorphic matcher that matches a 2-tuple where |
4644 | // FloatNear(first field, max_abs_error) matches the second field with NaN |
4645 | // equality. |
4646 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
4647 | float max_abs_error) { |
4648 | return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
4649 | } |
4650 | |
4651 | // Creates a polymorphic matcher that matches a 2-tuple where |
4652 | // DoubleNear(first field, max_abs_error) matches the second field with NaN |
4653 | // equality. |
4654 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
4655 | double max_abs_error) { |
4656 | return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
4657 | } |
4658 | |
4659 | // Creates a matcher that matches any value of type T that m doesn't |
4660 | // match. |
4661 | template <typename InnerMatcher> |
4662 | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
4663 | return internal::NotMatcher<InnerMatcher>(m); |
4664 | } |
4665 | |
4666 | // Returns a matcher that matches anything that satisfies the given |
4667 | // predicate. The predicate can be any unary function or functor |
4668 | // whose return type can be implicitly converted to bool. |
4669 | template <typename Predicate> |
4670 | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly( |
4671 | Predicate pred) { |
4672 | return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
4673 | } |
4674 | |
4675 | // Returns a matcher that matches the container size. The container must |
4676 | // support both size() and size_type which all STL-like containers provide. |
4677 | // Note that the parameter 'size' can be a value of type size_type as well as |
4678 | // matcher. For instance: |
4679 | // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
4680 | // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
4681 | template <typename SizeMatcher> |
4682 | inline internal::SizeIsMatcher<SizeMatcher> SizeIs( |
4683 | const SizeMatcher& size_matcher) { |
4684 | return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
4685 | } |
4686 | |
4687 | // Returns a matcher that matches the distance between the container's begin() |
4688 | // iterator and its end() iterator, i.e. the size of the container. This matcher |
4689 | // can be used instead of SizeIs with containers such as std::forward_list which |
4690 | // do not implement size(). The container must provide const_iterator (with |
4691 | // valid iterator_traits), begin() and end(). |
4692 | template <typename DistanceMatcher> |
4693 | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs( |
4694 | const DistanceMatcher& distance_matcher) { |
4695 | return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
4696 | } |
4697 | |
4698 | // Returns a matcher that matches an equal container. |
4699 | // This matcher behaves like Eq(), but in the event of mismatch lists the |
4700 | // values that are included in one container but not the other. (Duplicate |
4701 | // values and order differences are not explained.) |
4702 | template <typename Container> |
4703 | inline PolymorphicMatcher< |
4704 | internal::ContainerEqMatcher<typename std::remove_const<Container>::type>> |
4705 | ContainerEq(const Container& rhs) { |
4706 | return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); |
4707 | } |
4708 | |
4709 | // Returns a matcher that matches a container that, when sorted using |
4710 | // the given comparator, matches container_matcher. |
4711 | template <typename Comparator, typename ContainerMatcher> |
4712 | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy( |
4713 | const Comparator& comparator, const ContainerMatcher& container_matcher) { |
4714 | return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
4715 | comparator, container_matcher); |
4716 | } |
4717 | |
4718 | // Returns a matcher that matches a container that, when sorted using |
4719 | // the < operator, matches container_matcher. |
4720 | template <typename ContainerMatcher> |
4721 | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
4722 | WhenSorted(const ContainerMatcher& container_matcher) { |
4723 | return internal::WhenSortedByMatcher<internal::LessComparator, |
4724 | ContainerMatcher>( |
4725 | internal::LessComparator(), container_matcher); |
4726 | } |
4727 | |
4728 | // Matches an STL-style container or a native array that contains the |
4729 | // same number of elements as in rhs, where its i-th element and rhs's |
4730 | // i-th element (as a pair) satisfy the given pair matcher, for all i. |
4731 | // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
4732 | // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
4733 | // LHS container and the RHS container respectively. |
4734 | template <typename TupleMatcher, typename Container> |
4735 | inline internal::PointwiseMatcher<TupleMatcher, |
4736 | typename std::remove_const<Container>::type> |
4737 | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
4738 | return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, |
4739 | rhs); |
4740 | } |
4741 | |
4742 | // Supports the Pointwise(m, {a, b, c}) syntax. |
4743 | template <typename TupleMatcher, typename T> |
4744 | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise( |
4745 | const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
4746 | return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
4747 | } |
4748 | |
4749 | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
4750 | // container or a native array that contains the same number of |
4751 | // elements as in rhs, where in some permutation of the container, its |
4752 | // i-th element and rhs's i-th element (as a pair) satisfy the given |
4753 | // pair matcher, for all i. Tuple2Matcher must be able to be safely |
4754 | // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
4755 | // the types of elements in the LHS container and the RHS container |
4756 | // respectively. |
4757 | // |
4758 | // This is like Pointwise(pair_matcher, rhs), except that the element |
4759 | // order doesn't matter. |
4760 | template <typename Tuple2Matcher, typename RhsContainer> |
4761 | inline internal::UnorderedElementsAreArrayMatcher< |
4762 | typename internal::BoundSecondMatcher< |
4763 | Tuple2Matcher, |
4764 | typename internal::StlContainerView< |
4765 | typename std::remove_const<RhsContainer>::type>::type::value_type>> |
4766 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4767 | const RhsContainer& rhs_container) { |
4768 | // RhsView allows the same code to handle RhsContainer being a |
4769 | // STL-style container and it being a native C-style array. |
4770 | typedef typename internal::StlContainerView<RhsContainer> RhsView; |
4771 | typedef typename RhsView::type RhsStlContainer; |
4772 | typedef typename RhsStlContainer::value_type Second; |
4773 | const RhsStlContainer& rhs_stl_container = |
4774 | RhsView::ConstReference(rhs_container); |
4775 | |
4776 | // Create a matcher for each element in rhs_container. |
4777 | ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers; |
4778 | for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end(); |
4779 | ++it) { |
4780 | matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it)); |
4781 | } |
4782 | |
4783 | // Delegate the work to UnorderedElementsAreArray(). |
4784 | return UnorderedElementsAreArray(matchers); |
4785 | } |
4786 | |
4787 | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
4788 | template <typename Tuple2Matcher, typename T> |
4789 | inline internal::UnorderedElementsAreArrayMatcher< |
4790 | typename internal::BoundSecondMatcher<Tuple2Matcher, T>> |
4791 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4792 | std::initializer_list<T> rhs) { |
4793 | return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
4794 | } |
4795 | |
4796 | // Matches an STL-style container or a native array that contains at |
4797 | // least one element matching the given value or matcher. |
4798 | // |
4799 | // Examples: |
4800 | // ::std::set<int> page_ids; |
4801 | // page_ids.insert(3); |
4802 | // page_ids.insert(1); |
4803 | // EXPECT_THAT(page_ids, Contains(1)); |
4804 | // EXPECT_THAT(page_ids, Contains(Gt(2))); |
4805 | // EXPECT_THAT(page_ids, Not(Contains(4))); // See below for Times(0) |
4806 | // |
4807 | // ::std::map<int, size_t> page_lengths; |
4808 | // page_lengths[1] = 100; |
4809 | // EXPECT_THAT(page_lengths, |
4810 | // Contains(::std::pair<const int, size_t>(1, 100))); |
4811 | // |
4812 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
4813 | // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
4814 | // |
4815 | // The matcher supports a modifier `Times` that allows to check for arbitrary |
4816 | // occurrences including testing for absence with Times(0). |
4817 | // |
4818 | // Examples: |
4819 | // ::std::vector<int> ids; |
4820 | // ids.insert(1); |
4821 | // ids.insert(1); |
4822 | // ids.insert(3); |
4823 | // EXPECT_THAT(ids, Contains(1).Times(2)); // 1 occurs 2 times |
4824 | // EXPECT_THAT(ids, Contains(2).Times(0)); // 2 is not present |
4825 | // EXPECT_THAT(ids, Contains(3).Times(Ge(1))); // 3 occurs at least once |
4826 | |
4827 | template <typename M> |
4828 | inline internal::ContainsMatcher<M> Contains(M matcher) { |
4829 | return internal::ContainsMatcher<M>(matcher); |
4830 | } |
4831 | |
4832 | // IsSupersetOf(iterator_first, iterator_last) |
4833 | // IsSupersetOf(pointer, count) |
4834 | // IsSupersetOf(array) |
4835 | // IsSupersetOf(container) |
4836 | // IsSupersetOf({e1, e2, ..., en}) |
4837 | // |
4838 | // IsSupersetOf() verifies that a surjective partial mapping onto a collection |
4839 | // of matchers exists. In other words, a container matches |
4840 | // IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
4841 | // {y1, ..., yn} of some of the container's elements where y1 matches e1, |
4842 | // ..., and yn matches en. Obviously, the size of the container must be >= n |
4843 | // in order to have a match. Examples: |
4844 | // |
4845 | // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
4846 | // 1 matches Ne(0). |
4847 | // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
4848 | // both Eq(1) and Lt(2). The reason is that different matchers must be used |
4849 | // for elements in different slots of the container. |
4850 | // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
4851 | // Eq(1) and (the second) 1 matches Lt(2). |
4852 | // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
4853 | // Gt(1) and 3 matches (the second) Gt(1). |
4854 | // |
4855 | // The matchers can be specified as an array, a pointer and count, a container, |
4856 | // an initializer list, or an STL iterator range. In each of these cases, the |
4857 | // underlying matchers can be either values or matchers. |
4858 | |
4859 | template <typename Iter> |
4860 | inline internal::UnorderedElementsAreArrayMatcher< |
4861 | typename ::std::iterator_traits<Iter>::value_type> |
4862 | IsSupersetOf(Iter first, Iter last) { |
4863 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4864 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4865 | internal::UnorderedMatcherRequire::Superset, first, last); |
4866 | } |
4867 | |
4868 | template <typename T> |
4869 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4870 | const T* pointer, size_t count) { |
4871 | return IsSupersetOf(pointer, pointer + count); |
4872 | } |
4873 | |
4874 | template <typename T, size_t N> |
4875 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4876 | const T (&array)[N]) { |
4877 | return IsSupersetOf(array, N); |
4878 | } |
4879 | |
4880 | template <typename Container> |
4881 | inline internal::UnorderedElementsAreArrayMatcher< |
4882 | typename Container::value_type> |
4883 | IsSupersetOf(const Container& container) { |
4884 | return IsSupersetOf(container.begin(), container.end()); |
4885 | } |
4886 | |
4887 | template <typename T> |
4888 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
4889 | ::std::initializer_list<T> xs) { |
4890 | return IsSupersetOf(xs.begin(), xs.end()); |
4891 | } |
4892 | |
4893 | // IsSubsetOf(iterator_first, iterator_last) |
4894 | // IsSubsetOf(pointer, count) |
4895 | // IsSubsetOf(array) |
4896 | // IsSubsetOf(container) |
4897 | // IsSubsetOf({e1, e2, ..., en}) |
4898 | // |
4899 | // IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
4900 | // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
4901 | // only if there is a subset of matchers {m1, ..., mk} which would match the |
4902 | // container using UnorderedElementsAre. Obviously, the size of the container |
4903 | // must be <= n in order to have a match. Examples: |
4904 | // |
4905 | // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
4906 | // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
4907 | // matches Lt(0). |
4908 | // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
4909 | // match Gt(0). The reason is that different matchers must be used for |
4910 | // elements in different slots of the container. |
4911 | // |
4912 | // The matchers can be specified as an array, a pointer and count, a container, |
4913 | // an initializer list, or an STL iterator range. In each of these cases, the |
4914 | // underlying matchers can be either values or matchers. |
4915 | |
4916 | template <typename Iter> |
4917 | inline internal::UnorderedElementsAreArrayMatcher< |
4918 | typename ::std::iterator_traits<Iter>::value_type> |
4919 | IsSubsetOf(Iter first, Iter last) { |
4920 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4921 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4922 | internal::UnorderedMatcherRequire::Subset, first, last); |
4923 | } |
4924 | |
4925 | template <typename T> |
4926 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4927 | const T* pointer, size_t count) { |
4928 | return IsSubsetOf(pointer, pointer + count); |
4929 | } |
4930 | |
4931 | template <typename T, size_t N> |
4932 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4933 | const T (&array)[N]) { |
4934 | return IsSubsetOf(array, N); |
4935 | } |
4936 | |
4937 | template <typename Container> |
4938 | inline internal::UnorderedElementsAreArrayMatcher< |
4939 | typename Container::value_type> |
4940 | IsSubsetOf(const Container& container) { |
4941 | return IsSubsetOf(container.begin(), container.end()); |
4942 | } |
4943 | |
4944 | template <typename T> |
4945 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
4946 | ::std::initializer_list<T> xs) { |
4947 | return IsSubsetOf(xs.begin(), xs.end()); |
4948 | } |
4949 | |
4950 | // Matches an STL-style container or a native array that contains only |
4951 | // elements matching the given value or matcher. |
4952 | // |
4953 | // Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only |
4954 | // the messages are different. |
4955 | // |
4956 | // Examples: |
4957 | // ::std::set<int> page_ids; |
4958 | // // Each(m) matches an empty container, regardless of what m is. |
4959 | // EXPECT_THAT(page_ids, Each(Eq(1))); |
4960 | // EXPECT_THAT(page_ids, Each(Eq(77))); |
4961 | // |
4962 | // page_ids.insert(3); |
4963 | // EXPECT_THAT(page_ids, Each(Gt(0))); |
4964 | // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
4965 | // page_ids.insert(1); |
4966 | // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
4967 | // |
4968 | // ::std::map<int, size_t> page_lengths; |
4969 | // page_lengths[1] = 100; |
4970 | // page_lengths[2] = 200; |
4971 | // page_lengths[3] = 300; |
4972 | // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
4973 | // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
4974 | // |
4975 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
4976 | // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
4977 | template <typename M> |
4978 | inline internal::EachMatcher<M> Each(M matcher) { |
4979 | return internal::EachMatcher<M>(matcher); |
4980 | } |
4981 | |
4982 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
4983 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
4984 | // std::map that contains at least one element whose key is >= 5. |
4985 | template <typename M> |
4986 | inline internal::KeyMatcher<M> Key(M inner_matcher) { |
4987 | return internal::KeyMatcher<M>(inner_matcher); |
4988 | } |
4989 | |
4990 | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
4991 | // matches first_matcher and whose 'second' field matches second_matcher. For |
4992 | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
4993 | // to match a std::map<int, string> that contains exactly one element whose key |
4994 | // is >= 5 and whose value equals "foo". |
4995 | template <typename FirstMatcher, typename SecondMatcher> |
4996 | inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair( |
4997 | FirstMatcher first_matcher, SecondMatcher second_matcher) { |
4998 | return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher, |
4999 | second_matcher); |
5000 | } |
5001 | |
5002 | namespace no_adl { |
5003 | // Conditional() creates a matcher that conditionally uses either the first or |
5004 | // second matcher provided. For example, we could create an `equal if, and only |
5005 | // if' matcher using the Conditional wrapper as follows: |
5006 | // |
5007 | // EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected))); |
5008 | template <typename MatcherTrue, typename MatcherFalse> |
5009 | internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional( |
5010 | bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) { |
5011 | return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>( |
5012 | condition, std::move(matcher_true), std::move(matcher_false)); |
5013 | } |
5014 | |
5015 | // FieldsAre(matchers...) matches piecewise the fields of compatible structs. |
5016 | // These include those that support `get<I>(obj)`, and when structured bindings |
5017 | // are enabled any class that supports them. |
5018 | // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. |
5019 | template <typename... M> |
5020 | internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( |
5021 | M&&... matchers) { |
5022 | return internal::FieldsAreMatcher<typename std::decay<M>::type...>( |
5023 | std::forward<M>(matchers)...); |
5024 | } |
5025 | |
5026 | // Creates a matcher that matches a pointer (raw or smart) that matches |
5027 | // inner_matcher. |
5028 | template <typename InnerMatcher> |
5029 | inline internal::PointerMatcher<InnerMatcher> Pointer( |
5030 | const InnerMatcher& inner_matcher) { |
5031 | return internal::PointerMatcher<InnerMatcher>(inner_matcher); |
5032 | } |
5033 | |
5034 | // Creates a matcher that matches an object that has an address that matches |
5035 | // inner_matcher. |
5036 | template <typename InnerMatcher> |
5037 | inline internal::AddressMatcher<InnerMatcher> Address( |
5038 | const InnerMatcher& inner_matcher) { |
5039 | return internal::AddressMatcher<InnerMatcher>(inner_matcher); |
5040 | } |
5041 | |
5042 | // Matches a base64 escaped string, when the unescaped string matches the |
5043 | // internal matcher. |
5044 | template <typename MatcherType> |
5045 | internal::WhenBase64UnescapedMatcher WhenBase64Unescaped( |
5046 | const MatcherType& internal_matcher) { |
5047 | return internal::WhenBase64UnescapedMatcher(internal_matcher); |
5048 | } |
5049 | } // namespace no_adl |
5050 | |
5051 | // Returns a predicate that is satisfied by anything that matches the |
5052 | // given matcher. |
5053 | template <typename M> |
5054 | inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
5055 | return internal::MatcherAsPredicate<M>(matcher); |
5056 | } |
5057 | |
5058 | // Returns true if and only if the value matches the matcher. |
5059 | template <typename T, typename M> |
5060 | inline bool Value(const T& value, M matcher) { |
5061 | return testing::Matches(matcher)(value); |
5062 | } |
5063 | |
5064 | // Matches the value against the given matcher and explains the match |
5065 | // result to listener. |
5066 | template <typename T, typename M> |
5067 | inline bool ExplainMatchResult(M matcher, const T& value, |
5068 | MatchResultListener* listener) { |
5069 | return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
5070 | } |
5071 | |
5072 | // Returns a string representation of the given matcher. Useful for description |
5073 | // strings of matchers defined using MATCHER_P* macros that accept matchers as |
5074 | // their arguments. For example: |
5075 | // |
5076 | // MATCHER_P(XAndYThat, matcher, |
5077 | // "X that " + DescribeMatcher<int>(matcher, negation) + |
5078 | // (negation ? " or" : " and") + " Y that " + |
5079 | // DescribeMatcher<double>(matcher, negation)) { |
5080 | // return ExplainMatchResult(matcher, arg.x(), result_listener) && |
5081 | // ExplainMatchResult(matcher, arg.y(), result_listener); |
5082 | // } |
5083 | template <typename T, typename M> |
5084 | std::string DescribeMatcher(const M& matcher, bool negation = false) { |
5085 | ::std::stringstream ss; |
5086 | Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
5087 | if (negation) { |
5088 | monomorphic_matcher.DescribeNegationTo(&ss); |
5089 | } else { |
5090 | monomorphic_matcher.DescribeTo(&ss); |
5091 | } |
5092 | return ss.str(); |
5093 | } |
5094 | |
5095 | template <typename... Args> |
5096 | internal::ElementsAreMatcher< |
5097 | std::tuple<typename std::decay<const Args&>::type...>> |
5098 | ElementsAre(const Args&... matchers) { |
5099 | return internal::ElementsAreMatcher< |
5100 | std::tuple<typename std::decay<const Args&>::type...>>( |
5101 | std::make_tuple(matchers...)); |
5102 | } |
5103 | |
5104 | template <typename... Args> |
5105 | internal::UnorderedElementsAreMatcher< |
5106 | std::tuple<typename std::decay<const Args&>::type...>> |
5107 | UnorderedElementsAre(const Args&... matchers) { |
5108 | return internal::UnorderedElementsAreMatcher< |
5109 | std::tuple<typename std::decay<const Args&>::type...>>( |
5110 | std::make_tuple(matchers...)); |
5111 | } |
5112 | |
5113 | // Define variadic matcher versions. |
5114 | template <typename... Args> |
5115 | internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
5116 | const Args&... matchers) { |
5117 | return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
5118 | matchers...); |
5119 | } |
5120 | |
5121 | template <typename... Args> |
5122 | internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
5123 | const Args&... matchers) { |
5124 | return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
5125 | matchers...); |
5126 | } |
5127 | |
5128 | // AnyOfArray(array) |
5129 | // AnyOfArray(pointer, count) |
5130 | // AnyOfArray(container) |
5131 | // AnyOfArray({ e1, e2, ..., en }) |
5132 | // AnyOfArray(iterator_first, iterator_last) |
5133 | // |
5134 | // AnyOfArray() verifies whether a given value matches any member of a |
5135 | // collection of matchers. |
5136 | // |
5137 | // AllOfArray(array) |
5138 | // AllOfArray(pointer, count) |
5139 | // AllOfArray(container) |
5140 | // AllOfArray({ e1, e2, ..., en }) |
5141 | // AllOfArray(iterator_first, iterator_last) |
5142 | // |
5143 | // AllOfArray() verifies whether a given value matches all members of a |
5144 | // collection of matchers. |
5145 | // |
5146 | // The matchers can be specified as an array, a pointer and count, a container, |
5147 | // an initializer list, or an STL iterator range. In each of these cases, the |
5148 | // underlying matchers can be either values or matchers. |
5149 | |
5150 | template <typename Iter> |
5151 | inline internal::AnyOfArrayMatcher< |
5152 | typename ::std::iterator_traits<Iter>::value_type> |
5153 | AnyOfArray(Iter first, Iter last) { |
5154 | return internal::AnyOfArrayMatcher< |
5155 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
5156 | } |
5157 | |
5158 | template <typename Iter> |
5159 | inline internal::AllOfArrayMatcher< |
5160 | typename ::std::iterator_traits<Iter>::value_type> |
5161 | AllOfArray(Iter first, Iter last) { |
5162 | return internal::AllOfArrayMatcher< |
5163 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
5164 | } |
5165 | |
5166 | template <typename T> |
5167 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
5168 | return AnyOfArray(ptr, ptr + count); |
5169 | } |
5170 | |
5171 | template <typename T> |
5172 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
5173 | return AllOfArray(ptr, ptr + count); |
5174 | } |
5175 | |
5176 | template <typename T, size_t N> |
5177 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
5178 | return AnyOfArray(array, N); |
5179 | } |
5180 | |
5181 | template <typename T, size_t N> |
5182 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
5183 | return AllOfArray(array, N); |
5184 | } |
5185 | |
5186 | template <typename Container> |
5187 | inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
5188 | const Container& container) { |
5189 | return AnyOfArray(container.begin(), container.end()); |
5190 | } |
5191 | |
5192 | template <typename Container> |
5193 | inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
5194 | const Container& container) { |
5195 | return AllOfArray(container.begin(), container.end()); |
5196 | } |
5197 | |
5198 | template <typename T> |
5199 | inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
5200 | ::std::initializer_list<T> xs) { |
5201 | return AnyOfArray(xs.begin(), xs.end()); |
5202 | } |
5203 | |
5204 | template <typename T> |
5205 | inline internal::AllOfArrayMatcher<T> AllOfArray( |
5206 | ::std::initializer_list<T> xs) { |
5207 | return AllOfArray(xs.begin(), xs.end()); |
5208 | } |
5209 | |
5210 | // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
5211 | // fields of it matches a_matcher. C++ doesn't support default |
5212 | // arguments for function templates, so we have to overload it. |
5213 | template <size_t... k, typename InnerMatcher> |
5214 | internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
5215 | InnerMatcher&& matcher) { |
5216 | return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
5217 | std::forward<InnerMatcher>(matcher)); |
5218 | } |
5219 | |
5220 | // AllArgs(m) is a synonym of m. This is useful in |
5221 | // |
5222 | // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
5223 | // |
5224 | // which is easier to read than |
5225 | // |
5226 | // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
5227 | template <typename InnerMatcher> |
5228 | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { |
5229 | return matcher; |
5230 | } |
5231 | |
5232 | // Returns a matcher that matches the value of an optional<> type variable. |
5233 | // The matcher implementation only uses '!arg' and requires that the optional<> |
5234 | // type has a 'value_type' member type and that '*arg' is of type 'value_type' |
5235 | // and is printable using 'PrintToString'. It is compatible with |
5236 | // std::optional/std::experimental::optional. |
5237 | // Note that to compare an optional type variable against nullopt you should |
5238 | // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the |
5239 | // optional value contains an optional itself. |
5240 | template <typename ValueMatcher> |
5241 | inline internal::OptionalMatcher<ValueMatcher> Optional( |
5242 | const ValueMatcher& value_matcher) { |
5243 | return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
5244 | } |
5245 | |
5246 | // Returns a matcher that matches the value of a absl::any type variable. |
5247 | template <typename T> |
5248 | PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith( |
5249 | const Matcher<const T&>& matcher) { |
5250 | return MakePolymorphicMatcher( |
5251 | internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
5252 | } |
5253 | |
5254 | // Returns a matcher that matches the value of a variant<> type variable. |
5255 | // The matcher implementation uses ADL to find the holds_alternative and get |
5256 | // functions. |
5257 | // It is compatible with std::variant. |
5258 | template <typename T> |
5259 | PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith( |
5260 | const Matcher<const T&>& matcher) { |
5261 | return MakePolymorphicMatcher( |
5262 | internal::variant_matcher::VariantMatcher<T>(matcher)); |
5263 | } |
5264 | |
5265 | #if GTEST_HAS_EXCEPTIONS |
5266 | |
5267 | // Anything inside the `internal` namespace is internal to the implementation |
5268 | // and must not be used in user code! |
5269 | namespace internal { |
5270 | |
5271 | class WithWhatMatcherImpl { |
5272 | public: |
5273 | WithWhatMatcherImpl(Matcher<std::string> matcher) |
5274 | : matcher_(std::move(matcher)) {} |
5275 | |
5276 | void DescribeTo(std::ostream* os) const { |
5277 | *os << "contains .what() that " ; |
5278 | matcher_.DescribeTo(os); |
5279 | } |
5280 | |
5281 | void DescribeNegationTo(std::ostream* os) const { |
5282 | *os << "contains .what() that does not " ; |
5283 | matcher_.DescribeTo(os); |
5284 | } |
5285 | |
5286 | template <typename Err> |
5287 | bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { |
5288 | *listener << "which contains .what() (of value = " << err.what() |
5289 | << ") that " ; |
5290 | return matcher_.MatchAndExplain(err.what(), listener); |
5291 | } |
5292 | |
5293 | private: |
5294 | const Matcher<std::string> matcher_; |
5295 | }; |
5296 | |
5297 | inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( |
5298 | Matcher<std::string> m) { |
5299 | return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); |
5300 | } |
5301 | |
5302 | template <typename Err> |
5303 | class ExceptionMatcherImpl { |
5304 | class NeverThrown { |
5305 | public: |
5306 | const char* what() const noexcept { |
5307 | return "this exception should never be thrown" ; |
5308 | } |
5309 | }; |
5310 | |
5311 | // If the matchee raises an exception of a wrong type, we'd like to |
5312 | // catch it and print its message and type. To do that, we add an additional |
5313 | // catch clause: |
5314 | // |
5315 | // try { ... } |
5316 | // catch (const Err&) { /* an expected exception */ } |
5317 | // catch (const std::exception&) { /* exception of a wrong type */ } |
5318 | // |
5319 | // However, if the `Err` itself is `std::exception`, we'd end up with two |
5320 | // identical `catch` clauses: |
5321 | // |
5322 | // try { ... } |
5323 | // catch (const std::exception&) { /* an expected exception */ } |
5324 | // catch (const std::exception&) { /* exception of a wrong type */ } |
5325 | // |
5326 | // This can cause a warning or an error in some compilers. To resolve |
5327 | // the issue, we use a fake error type whenever `Err` is `std::exception`: |
5328 | // |
5329 | // try { ... } |
5330 | // catch (const std::exception&) { /* an expected exception */ } |
5331 | // catch (const NeverThrown&) { /* exception of a wrong type */ } |
5332 | using DefaultExceptionType = typename std::conditional< |
5333 | std::is_same<typename std::remove_cv< |
5334 | typename std::remove_reference<Err>::type>::type, |
5335 | std::exception>::value, |
5336 | const NeverThrown&, const std::exception&>::type; |
5337 | |
5338 | public: |
5339 | ExceptionMatcherImpl(Matcher<const Err&> matcher) |
5340 | : matcher_(std::move(matcher)) {} |
5341 | |
5342 | void DescribeTo(std::ostream* os) const { |
5343 | *os << "throws an exception which is a " << GetTypeName<Err>(); |
5344 | *os << " which " ; |
5345 | matcher_.DescribeTo(os); |
5346 | } |
5347 | |
5348 | void DescribeNegationTo(std::ostream* os) const { |
5349 | *os << "throws an exception which is not a " << GetTypeName<Err>(); |
5350 | *os << " which " ; |
5351 | matcher_.DescribeNegationTo(os); |
5352 | } |
5353 | |
5354 | template <typename T> |
5355 | bool MatchAndExplain(T&& x, MatchResultListener* listener) const { |
5356 | try { |
5357 | (void)(std::forward<T>(x)()); |
5358 | } catch (const Err& err) { |
5359 | *listener << "throws an exception which is a " << GetTypeName<Err>(); |
5360 | *listener << " " ; |
5361 | return matcher_.MatchAndExplain(err, listener); |
5362 | } catch (DefaultExceptionType err) { |
5363 | #if GTEST_HAS_RTTI |
5364 | *listener << "throws an exception of type " << GetTypeName(typeid(err)); |
5365 | *listener << " " ; |
5366 | #else |
5367 | *listener << "throws an std::exception-derived type " ; |
5368 | #endif |
5369 | *listener << "with description \"" << err.what() << "\"" ; |
5370 | return false; |
5371 | } catch (...) { |
5372 | *listener << "throws an exception of an unknown type" ; |
5373 | return false; |
5374 | } |
5375 | |
5376 | *listener << "does not throw any exception" ; |
5377 | return false; |
5378 | } |
5379 | |
5380 | private: |
5381 | const Matcher<const Err&> matcher_; |
5382 | }; |
5383 | |
5384 | } // namespace internal |
5385 | |
5386 | // Throws() |
5387 | // Throws(exceptionMatcher) |
5388 | // ThrowsMessage(messageMatcher) |
5389 | // |
5390 | // This matcher accepts a callable and verifies that when invoked, it throws |
5391 | // an exception with the given type and properties. |
5392 | // |
5393 | // Examples: |
5394 | // |
5395 | // EXPECT_THAT( |
5396 | // []() { throw std::runtime_error("message"); }, |
5397 | // Throws<std::runtime_error>()); |
5398 | // |
5399 | // EXPECT_THAT( |
5400 | // []() { throw std::runtime_error("message"); }, |
5401 | // ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
5402 | // |
5403 | // EXPECT_THAT( |
5404 | // []() { throw std::runtime_error("message"); }, |
5405 | // Throws<std::runtime_error>( |
5406 | // Property(&std::runtime_error::what, HasSubstr("message")))); |
5407 | |
5408 | template <typename Err> |
5409 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { |
5410 | return MakePolymorphicMatcher( |
5411 | internal::ExceptionMatcherImpl<Err>(A<const Err&>())); |
5412 | } |
5413 | |
5414 | template <typename Err, typename ExceptionMatcher> |
5415 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( |
5416 | const ExceptionMatcher& exception_matcher) { |
5417 | // Using matcher cast allows users to pass a matcher of a more broad type. |
5418 | // For example user may want to pass Matcher<std::exception> |
5419 | // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. |
5420 | return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( |
5421 | SafeMatcherCast<const Err&>(exception_matcher))); |
5422 | } |
5423 | |
5424 | template <typename Err, typename MessageMatcher> |
5425 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( |
5426 | MessageMatcher&& message_matcher) { |
5427 | static_assert(std::is_base_of<std::exception, Err>::value, |
5428 | "expected an std::exception-derived type" ); |
5429 | return Throws<Err>(internal::WithWhat( |
5430 | MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); |
5431 | } |
5432 | |
5433 | #endif // GTEST_HAS_EXCEPTIONS |
5434 | |
5435 | // These macros allow using matchers to check values in Google Test |
5436 | // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
5437 | // succeed if and only if the value matches the matcher. If the assertion |
5438 | // fails, the value and the description of the matcher will be printed. |
5439 | #define ASSERT_THAT(value, matcher) \ |
5440 | ASSERT_PRED_FORMAT1( \ |
5441 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
5442 | #define EXPECT_THAT(value, matcher) \ |
5443 | EXPECT_PRED_FORMAT1( \ |
5444 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
5445 | |
5446 | // MATCHER* macros itself are listed below. |
5447 | #define MATCHER(name, description) \ |
5448 | class name##Matcher \ |
5449 | : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ |
5450 | public: \ |
5451 | template <typename arg_type> \ |
5452 | class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
5453 | public: \ |
5454 | gmock_Impl() {} \ |
5455 | bool MatchAndExplain( \ |
5456 | const arg_type& arg, \ |
5457 | ::testing::MatchResultListener* result_listener) const override; \ |
5458 | void DescribeTo(::std::ostream* gmock_os) const override { \ |
5459 | *gmock_os << FormatDescription(false); \ |
5460 | } \ |
5461 | void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
5462 | *gmock_os << FormatDescription(true); \ |
5463 | } \ |
5464 | \ |
5465 | private: \ |
5466 | ::std::string FormatDescription(bool negation) const { \ |
5467 | /* NOLINTNEXTLINE readability-redundant-string-init */ \ |
5468 | ::std::string gmock_description = (description); \ |
5469 | if (!gmock_description.empty()) { \ |
5470 | return gmock_description; \ |
5471 | } \ |
5472 | return ::testing::internal::FormatMatcherDescription(negation, #name, \ |
5473 | {}, {}); \ |
5474 | } \ |
5475 | }; \ |
5476 | }; \ |
5477 | inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH() \ |
5478 | GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function") \ |
5479 | GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function") \ |
5480 | name GMOCK_INTERNAL_WARNING_POP()() { \ |
5481 | return {}; \ |
5482 | } \ |
5483 | template <typename arg_type> \ |
5484 | bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ |
5485 | const arg_type& arg, \ |
5486 | ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
5487 | const |
5488 | |
5489 | #define MATCHER_P(name, p0, description) \ |
5490 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0)) |
5491 | #define MATCHER_P2(name, p0, p1, description) \ |
5492 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \ |
5493 | (p0, p1)) |
5494 | #define MATCHER_P3(name, p0, p1, p2, description) \ |
5495 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \ |
5496 | (p0, p1, p2)) |
5497 | #define MATCHER_P4(name, p0, p1, p2, p3, description) \ |
5498 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \ |
5499 | (#p0, #p1, #p2, #p3), (p0, p1, p2, p3)) |
5500 | #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ |
5501 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ |
5502 | (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4)) |
5503 | #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ |
5504 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ |
5505 | (#p0, #p1, #p2, #p3, #p4, #p5), \ |
5506 | (p0, p1, p2, p3, p4, p5)) |
5507 | #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ |
5508 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ |
5509 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6), \ |
5510 | (p0, p1, p2, p3, p4, p5, p6)) |
5511 | #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ |
5512 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ |
5513 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7), \ |
5514 | (p0, p1, p2, p3, p4, p5, p6, p7)) |
5515 | #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ |
5516 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ |
5517 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8), \ |
5518 | (p0, p1, p2, p3, p4, p5, p6, p7, p8)) |
5519 | #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ |
5520 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ |
5521 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9), \ |
5522 | (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) |
5523 | |
5524 | #define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args) \ |
5525 | template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
5526 | class full_name : public ::testing::internal::MatcherBaseImpl< \ |
5527 | full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ |
5528 | public: \ |
5529 | using full_name::MatcherBaseImpl::MatcherBaseImpl; \ |
5530 | template <typename arg_type> \ |
5531 | class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
5532 | public: \ |
5533 | explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ |
5534 | : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ |
5535 | bool MatchAndExplain( \ |
5536 | const arg_type& arg, \ |
5537 | ::testing::MatchResultListener* result_listener) const override; \ |
5538 | void DescribeTo(::std::ostream* gmock_os) const override { \ |
5539 | *gmock_os << FormatDescription(false); \ |
5540 | } \ |
5541 | void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
5542 | *gmock_os << FormatDescription(true); \ |
5543 | } \ |
5544 | GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
5545 | \ |
5546 | private: \ |
5547 | ::std::string FormatDescription(bool negation) const { \ |
5548 | ::std::string gmock_description; \ |
5549 | gmock_description = (description); \ |
5550 | if (!gmock_description.empty()) { \ |
5551 | return gmock_description; \ |
5552 | } \ |
5553 | return ::testing::internal::FormatMatcherDescription( \ |
5554 | negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)}, \ |
5555 | ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ |
5556 | ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
5557 | GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ |
5558 | } \ |
5559 | }; \ |
5560 | }; \ |
5561 | template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
5562 | inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ |
5563 | GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ |
5564 | return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
5565 | GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ |
5566 | } \ |
5567 | template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
5568 | template <typename arg_type> \ |
5569 | bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ |
5570 | arg_type>::MatchAndExplain(const arg_type& arg, \ |
5571 | ::testing::MatchResultListener* \ |
5572 | result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
5573 | const |
5574 | |
5575 | #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ |
5576 | GMOCK_PP_TAIL( \ |
5577 | GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) |
5578 | #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ |
5579 | , typename arg##_type |
5580 | |
5581 | #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ |
5582 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) |
5583 | #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ |
5584 | , arg##_type |
5585 | |
5586 | #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ |
5587 | GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ |
5588 | GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) |
5589 | #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ |
5590 | , arg##_type gmock_p##i |
5591 | |
5592 | #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ |
5593 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) |
5594 | #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ |
5595 | , arg(::std::forward<arg##_type>(gmock_p##i)) |
5596 | |
5597 | #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
5598 | GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) |
5599 | #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ |
5600 | const arg##_type arg; |
5601 | |
5602 | #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ |
5603 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) |
5604 | #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg |
5605 | |
5606 | #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ |
5607 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) |
5608 | #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ |
5609 | , gmock_p##i |
5610 | |
5611 | // To prevent ADL on certain functions we put them on a separate namespace. |
5612 | using namespace no_adl; // NOLINT |
5613 | |
5614 | } // namespace testing |
5615 | |
5616 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
5617 | |
5618 | // Include any custom callback matchers added by the local installation. |
5619 | // We must include this header at the end to make sure it can use the |
5620 | // declarations from this file. |
5621 | #include "gmock/internal/custom/gmock-matchers.h" |
5622 | |
5623 | #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
5624 | |