1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// Google Mock - a framework for writing C++ mock classes.
31//
32// The MATCHER* family of macros can be used in a namespace scope to
33// define custom matchers easily.
34//
35// Basic Usage
36// ===========
37//
38// The syntax
39//
40// MATCHER(name, description_string) { statements; }
41//
42// defines a matcher with the given name that executes the statements,
43// which must return a bool to indicate if the match succeeds. Inside
44// the statements, you can refer to the value being matched by 'arg',
45// and refer to its type by 'arg_type'.
46//
47// The description string documents what the matcher does, and is used
48// to generate the failure message when the match fails. Since a
49// MATCHER() is usually defined in a header file shared by multiple
50// C++ source files, we require the description to be a C-string
51// literal to avoid possible side effects. It can be empty, in which
52// case we'll use the sequence of words in the matcher name as the
53// description.
54//
55// For example:
56//
57// MATCHER(IsEven, "") { return (arg % 2) == 0; }
58//
59// allows you to write
60//
61// // Expects mock_foo.Bar(n) to be called where n is even.
62// EXPECT_CALL(mock_foo, Bar(IsEven()));
63//
64// or,
65//
66// // Verifies that the value of some_expression is even.
67// EXPECT_THAT(some_expression, IsEven());
68//
69// If the above assertion fails, it will print something like:
70//
71// Value of: some_expression
72// Expected: is even
73// Actual: 7
74//
75// where the description "is even" is automatically calculated from the
76// matcher name IsEven.
77//
78// Argument Type
79// =============
80//
81// Note that the type of the value being matched (arg_type) is
82// determined by the context in which you use the matcher and is
83// supplied to you by the compiler, so you don't need to worry about
84// declaring it (nor can you). This allows the matcher to be
85// polymorphic. For example, IsEven() can be used to match any type
86// where the value of "(arg % 2) == 0" can be implicitly converted to
87// a bool. In the "Bar(IsEven())" example above, if method Bar()
88// takes an int, 'arg_type' will be int; if it takes an unsigned long,
89// 'arg_type' will be unsigned long; and so on.
90//
91// Parameterizing Matchers
92// =======================
93//
94// Sometimes you'll want to parameterize the matcher. For that you
95// can use another macro:
96//
97// MATCHER_P(name, param_name, description_string) { statements; }
98//
99// For example:
100//
101// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
102//
103// will allow you to write:
104//
105// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
106//
107// which may lead to this message (assuming n is 10):
108//
109// Value of: Blah("a")
110// Expected: has absolute value 10
111// Actual: -9
112//
113// Note that both the matcher description and its parameter are
114// printed, making the message human-friendly.
115//
116// In the matcher definition body, you can write 'foo_type' to
117// reference the type of a parameter named 'foo'. For example, in the
118// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
119// 'value_type' to refer to the type of 'value'.
120//
121// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
122// support multi-parameter matchers.
123//
124// Describing Parameterized Matchers
125// =================================
126//
127// The last argument to MATCHER*() is a string-typed expression. The
128// expression can reference all of the matcher's parameters and a
129// special bool-typed variable named 'negation'. When 'negation' is
130// false, the expression should evaluate to the matcher's description;
131// otherwise it should evaluate to the description of the negation of
132// the matcher. For example,
133//
134// using testing::PrintToString;
135//
136// MATCHER_P2(InClosedRange, low, hi,
137// std::string(negation ? "is not" : "is") + " in range [" +
138// PrintToString(low) + ", " + PrintToString(hi) + "]") {
139// return low <= arg && arg <= hi;
140// }
141// ...
142// EXPECT_THAT(3, InClosedRange(4, 6));
143// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
144//
145// would generate two failures that contain the text:
146//
147// Expected: is in range [4, 6]
148// ...
149// Expected: is not in range [2, 4]
150//
151// If you specify "" as the description, the failure message will
152// contain the sequence of words in the matcher name followed by the
153// parameter values printed as a tuple. For example,
154//
155// MATCHER_P2(InClosedRange, low, hi, "") { ... }
156// ...
157// EXPECT_THAT(3, InClosedRange(4, 6));
158// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
159//
160// would generate two failures that contain the text:
161//
162// Expected: in closed range (4, 6)
163// ...
164// Expected: not (in closed range (2, 4))
165//
166// Types of Matcher Parameters
167// ===========================
168//
169// For the purpose of typing, you can view
170//
171// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
172//
173// as shorthand for
174//
175// template <typename p1_type, ..., typename pk_type>
176// FooMatcherPk<p1_type, ..., pk_type>
177// Foo(p1_type p1, ..., pk_type pk) { ... }
178//
179// When you write Foo(v1, ..., vk), the compiler infers the types of
180// the parameters v1, ..., and vk for you. If you are not happy with
181// the result of the type inference, you can specify the types by
182// explicitly instantiating the template, as in Foo<long, bool>(5,
183// false). As said earlier, you don't get to (or need to) specify
184// 'arg_type' as that's determined by the context in which the matcher
185// is used. You can assign the result of expression Foo(p1, ..., pk)
186// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
187// can be useful when composing matchers.
188//
189// While you can instantiate a matcher template with reference types,
190// passing the parameters by pointer usually makes your code more
191// readable. If, however, you still want to pass a parameter by
192// reference, be aware that in the failure message generated by the
193// matcher you will see the value of the referenced object but not its
194// address.
195//
196// Explaining Match Results
197// ========================
198//
199// Sometimes the matcher description alone isn't enough to explain why
200// the match has failed or succeeded. For example, when expecting a
201// long string, it can be very helpful to also print the diff between
202// the expected string and the actual one. To achieve that, you can
203// optionally stream additional information to a special variable
204// named result_listener, whose type is a pointer to class
205// MatchResultListener:
206//
207// MATCHER_P(EqualsLongString, str, "") {
208// if (arg == str) return true;
209//
210// *result_listener << "the difference: "
211/// << DiffStrings(str, arg);
212// return false;
213// }
214//
215// Overloading Matchers
216// ====================
217//
218// You can overload matchers with different numbers of parameters:
219//
220// MATCHER_P(Blah, a, description_string1) { ... }
221// MATCHER_P2(Blah, a, b, description_string2) { ... }
222//
223// Caveats
224// =======
225//
226// When defining a new matcher, you should also consider implementing
227// MatcherInterface or using MakePolymorphicMatcher(). These
228// approaches require more work than the MATCHER* macros, but also
229// give you more control on the types of the value being matched and
230// the matcher parameters, which may leads to better compiler error
231// messages when the matcher is used wrong. They also allow
232// overloading matchers based on parameter types (as opposed to just
233// based on the number of parameters).
234//
235// MATCHER*() can only be used in a namespace scope as templates cannot be
236// declared inside of a local class.
237//
238// More Information
239// ================
240//
241// To learn more about using these macros, please search for 'MATCHER'
242// on
243// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
244//
245// This file also implements some commonly used argument matchers. More
246// matchers can be defined by the user implementing the
247// MatcherInterface<T> interface if necessary.
248//
249// See googletest/include/gtest/gtest-matchers.h for the definition of class
250// Matcher, class MatcherInterface, and others.
251
252// IWYU pragma: private, include "gmock/gmock.h"
253// IWYU pragma: friend gmock/.*
254
255#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257
258#include <algorithm>
259#include <cmath>
260#include <exception>
261#include <functional>
262#include <initializer_list>
263#include <ios>
264#include <iterator>
265#include <limits>
266#include <memory>
267#include <ostream> // NOLINT
268#include <sstream>
269#include <string>
270#include <type_traits>
271#include <utility>
272#include <vector>
273
274#include "gmock/internal/gmock-internal-utils.h"
275#include "gmock/internal/gmock-port.h"
276#include "gmock/internal/gmock-pp.h"
277#include "gtest/gtest.h"
278
279// MSVC warning C5046 is new as of VS2017 version 15.8.
280#if defined(_MSC_VER) && _MSC_VER >= 1915
281#define GMOCK_MAYBE_5046_ 5046
282#else
283#define GMOCK_MAYBE_5046_
284#endif
285
286GTEST_DISABLE_MSC_WARNINGS_PUSH_(
287 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
288 clients of class B */
289 /* Symbol involving type with internal linkage not defined */)
290
291namespace testing {
292
293// To implement a matcher Foo for type T, define:
294// 1. a class FooMatcherImpl that implements the
295// MatcherInterface<T> interface, and
296// 2. a factory function that creates a Matcher<T> object from a
297// FooMatcherImpl*.
298//
299// The two-level delegation design makes it possible to allow a user
300// to write "v" instead of "Eq(v)" where a Matcher is expected, which
301// is impossible if we pass matchers by pointers. It also eases
302// ownership management as Matcher objects can now be copied like
303// plain values.
304
305// A match result listener that stores the explanation in a string.
306class StringMatchResultListener : public MatchResultListener {
307 public:
308 StringMatchResultListener() : MatchResultListener(&ss_) {}
309
310 // Returns the explanation accumulated so far.
311 std::string str() const { return ss_.str(); }
312
313 // Clears the explanation accumulated so far.
314 void Clear() { ss_.str(s: ""); }
315
316 private:
317 ::std::stringstream ss_;
318
319 StringMatchResultListener(const StringMatchResultListener&) = delete;
320 StringMatchResultListener& operator=(const StringMatchResultListener&) =
321 delete;
322};
323
324// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
325// and MUST NOT BE USED IN USER CODE!!!
326namespace internal {
327
328// The MatcherCastImpl class template is a helper for implementing
329// MatcherCast(). We need this helper in order to partially
330// specialize the implementation of MatcherCast() (C++ allows
331// class/struct templates to be partially specialized, but not
332// function templates.).
333
334// This general version is used when MatcherCast()'s argument is a
335// polymorphic matcher (i.e. something that can be converted to a
336// Matcher but is not one yet; for example, Eq(value)) or a value (for
337// example, "hello").
338template <typename T, typename M>
339class MatcherCastImpl {
340 public:
341 static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
342 // M can be a polymorphic matcher, in which case we want to use
343 // its conversion operator to create Matcher<T>. Or it can be a value
344 // that should be passed to the Matcher<T>'s constructor.
345 //
346 // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
347 // polymorphic matcher because it'll be ambiguous if T has an implicit
348 // constructor from M (this usually happens when T has an implicit
349 // constructor from any type).
350 //
351 // It won't work to unconditionally implicit_cast
352 // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
353 // a user-defined conversion from M to T if one exists (assuming M is
354 // a value).
355 return CastImpl(polymorphic_matcher_or_value,
356 std::is_convertible<M, Matcher<T>>{},
357 std::is_convertible<M, T>{});
358 }
359
360 private:
361 template <bool Ignore>
362 static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
363 std::true_type /* convertible_to_matcher */,
364 std::integral_constant<bool, Ignore>) {
365 // M is implicitly convertible to Matcher<T>, which means that either
366 // M is a polymorphic matcher or Matcher<T> has an implicit constructor
367 // from M. In both cases using the implicit conversion will produce a
368 // matcher.
369 //
370 // Even if T has an implicit constructor from M, it won't be called because
371 // creating Matcher<T> would require a chain of two user-defined conversions
372 // (first to create T from M and then to create Matcher<T> from T).
373 return polymorphic_matcher_or_value;
374 }
375
376 // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
377 // matcher. It's a value of a type implicitly convertible to T. Use direct
378 // initialization to create a matcher.
379 static Matcher<T> CastImpl(const M& value,
380 std::false_type /* convertible_to_matcher */,
381 std::true_type /* convertible_to_T */) {
382 return Matcher<T>(ImplicitCast_<T>(value));
383 }
384
385 // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
386 // polymorphic matcher Eq(value) in this case.
387 //
388 // Note that we first attempt to perform an implicit cast on the value and
389 // only fall back to the polymorphic Eq() matcher afterwards because the
390 // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
391 // which might be undefined even when Rhs is implicitly convertible to Lhs
392 // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
393 //
394 // We don't define this method inline as we need the declaration of Eq().
395 static Matcher<T> CastImpl(const M& value,
396 std::false_type /* convertible_to_matcher */,
397 std::false_type /* convertible_to_T */);
398};
399
400// This more specialized version is used when MatcherCast()'s argument
401// is already a Matcher. This only compiles when type T can be
402// statically converted to type U.
403template <typename T, typename U>
404class MatcherCastImpl<T, Matcher<U>> {
405 public:
406 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
407 return Matcher<T>(new Impl(source_matcher));
408 }
409
410 private:
411 class Impl : public MatcherInterface<T> {
412 public:
413 explicit Impl(const Matcher<U>& source_matcher)
414 : source_matcher_(source_matcher) {}
415
416 // We delegate the matching logic to the source matcher.
417 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
418 using FromType = typename std::remove_cv<typename std::remove_pointer<
419 typename std::remove_reference<T>::type>::type>::type;
420 using ToType = typename std::remove_cv<typename std::remove_pointer<
421 typename std::remove_reference<U>::type>::type>::type;
422 // Do not allow implicitly converting base*/& to derived*/&.
423 static_assert(
424 // Do not trigger if only one of them is a pointer. That implies a
425 // regular conversion and not a down_cast.
426 (std::is_pointer<typename std::remove_reference<T>::type>::value !=
427 std::is_pointer<typename std::remove_reference<U>::type>::value) ||
428 std::is_same<FromType, ToType>::value ||
429 !std::is_base_of<FromType, ToType>::value,
430 "Can't implicitly convert from <base> to <derived>");
431
432 // Do the cast to `U` explicitly if necessary.
433 // Otherwise, let implicit conversions do the trick.
434 using CastType =
435 typename std::conditional<std::is_convertible<T&, const U&>::value,
436 T&, U>::type;
437
438 return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
439 listener);
440 }
441
442 void DescribeTo(::std::ostream* os) const override {
443 source_matcher_.DescribeTo(os);
444 }
445
446 void DescribeNegationTo(::std::ostream* os) const override {
447 source_matcher_.DescribeNegationTo(os);
448 }
449
450 private:
451 const Matcher<U> source_matcher_;
452 };
453};
454
455// This even more specialized version is used for efficiently casting
456// a matcher to its own type.
457template <typename T>
458class MatcherCastImpl<T, Matcher<T>> {
459 public:
460 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
461};
462
463// Template specialization for parameterless Matcher.
464template <typename Derived>
465class MatcherBaseImpl {
466 public:
467 MatcherBaseImpl() = default;
468
469 template <typename T>
470 operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
471 return ::testing::Matcher<T>(new
472 typename Derived::template gmock_Impl<T>());
473 }
474};
475
476// Template specialization for Matcher with parameters.
477template <template <typename...> class Derived, typename... Ts>
478class MatcherBaseImpl<Derived<Ts...>> {
479 public:
480 // Mark the constructor explicit for single argument T to avoid implicit
481 // conversions.
482 template <typename E = std::enable_if<sizeof...(Ts) == 1>,
483 typename E::type* = nullptr>
484 explicit MatcherBaseImpl(Ts... params)
485 : params_(std::forward<Ts>(params)...) {}
486 template <typename E = std::enable_if<sizeof...(Ts) != 1>,
487 typename = typename E::type>
488 MatcherBaseImpl(Ts... params) // NOLINT
489 : params_(std::forward<Ts>(params)...) {}
490
491 template <typename F>
492 operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
493 return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
494 }
495
496 private:
497 template <typename F, std::size_t... tuple_ids>
498 ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
499 return ::testing::Matcher<F>(
500 new typename Derived<Ts...>::template gmock_Impl<F>(
501 std::get<tuple_ids>(params_)...));
502 }
503
504 const std::tuple<Ts...> params_;
505};
506
507} // namespace internal
508
509// In order to be safe and clear, casting between different matcher
510// types is done explicitly via MatcherCast<T>(m), which takes a
511// matcher m and returns a Matcher<T>. It compiles only when T can be
512// statically converted to the argument type of m.
513template <typename T, typename M>
514inline Matcher<T> MatcherCast(const M& matcher) {
515 return internal::MatcherCastImpl<T, M>::Cast(matcher);
516}
517
518// This overload handles polymorphic matchers and values only since
519// monomorphic matchers are handled by the next one.
520template <typename T, typename M>
521inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
522 return MatcherCast<T>(polymorphic_matcher_or_value);
523}
524
525// This overload handles monomorphic matchers.
526//
527// In general, if type T can be implicitly converted to type U, we can
528// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
529// contravariant): just keep a copy of the original Matcher<U>, convert the
530// argument from type T to U, and then pass it to the underlying Matcher<U>.
531// The only exception is when U is a reference and T is not, as the
532// underlying Matcher<U> may be interested in the argument's address, which
533// is not preserved in the conversion from T to U.
534template <typename T, typename U>
535inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
536 // Enforce that T can be implicitly converted to U.
537 static_assert(std::is_convertible<const T&, const U&>::value,
538 "T must be implicitly convertible to U");
539 // Enforce that we are not converting a non-reference type T to a reference
540 // type U.
541 static_assert(std::is_reference<T>::value || !std::is_reference<U>::value,
542 "cannot convert non reference arg to reference");
543 // In case both T and U are arithmetic types, enforce that the
544 // conversion is not lossy.
545 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
546 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
547 constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
548 constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
549 static_assert(
550 kTIsOther || kUIsOther ||
551 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
552 "conversion of arithmetic types must be lossless");
553 return MatcherCast<T>(matcher);
554}
555
556// A<T>() returns a matcher that matches any value of type T.
557template <typename T>
558Matcher<T> A();
559
560// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
561// and MUST NOT BE USED IN USER CODE!!!
562namespace internal {
563
564// If the explanation is not empty, prints it to the ostream.
565inline void PrintIfNotEmpty(const std::string& explanation,
566 ::std::ostream* os) {
567 if (!explanation.empty() && os != nullptr) {
568 *os << ", " << explanation;
569 }
570}
571
572// Returns true if the given type name is easy to read by a human.
573// This is used to decide whether printing the type of a value might
574// be helpful.
575inline bool IsReadableTypeName(const std::string& type_name) {
576 // We consider a type name readable if it's short or doesn't contain
577 // a template or function type.
578 return (type_name.length() <= 20 ||
579 type_name.find_first_of(s: "<(") == std::string::npos);
580}
581
582// Matches the value against the given matcher, prints the value and explains
583// the match result to the listener. Returns the match result.
584// 'listener' must not be NULL.
585// Value cannot be passed by const reference, because some matchers take a
586// non-const argument.
587template <typename Value, typename T>
588bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
589 MatchResultListener* listener) {
590 if (!listener->IsInterested()) {
591 // If the listener is not interested, we do not need to construct the
592 // inner explanation.
593 return matcher.Matches(value);
594 }
595
596 StringMatchResultListener inner_listener;
597 const bool match = matcher.MatchAndExplain(value, &inner_listener);
598
599 UniversalPrint(value, listener->stream());
600#if GTEST_HAS_RTTI
601 const std::string& type_name = GetTypeName<Value>();
602 if (IsReadableTypeName(type_name))
603 *listener->stream() << " (of type " << type_name << ")";
604#endif
605 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
606
607 return match;
608}
609
610// An internal helper class for doing compile-time loop on a tuple's
611// fields.
612template <size_t N>
613class TuplePrefix {
614 public:
615 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
616 // if and only if the first N fields of matcher_tuple matches
617 // the first N fields of value_tuple, respectively.
618 template <typename MatcherTuple, typename ValueTuple>
619 static bool Matches(const MatcherTuple& matcher_tuple,
620 const ValueTuple& value_tuple) {
621 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
622 std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
623 }
624
625 // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
626 // describes failures in matching the first N fields of matchers
627 // against the first N fields of values. If there is no failure,
628 // nothing will be streamed to os.
629 template <typename MatcherTuple, typename ValueTuple>
630 static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
631 const ValueTuple& values,
632 ::std::ostream* os) {
633 // First, describes failures in the first N - 1 fields.
634 TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
635
636 // Then describes the failure (if any) in the (N - 1)-th (0-based)
637 // field.
638 typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
639 std::get<N - 1>(matchers);
640 typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
641 const Value& value = std::get<N - 1>(values);
642 StringMatchResultListener listener;
643 if (!matcher.MatchAndExplain(value, &listener)) {
644 *os << " Expected arg #" << N - 1 << ": ";
645 std::get<N - 1>(matchers).DescribeTo(os);
646 *os << "\n Actual: ";
647 // We remove the reference in type Value to prevent the
648 // universal printer from printing the address of value, which
649 // isn't interesting to the user most of the time. The
650 // matcher's MatchAndExplain() method handles the case when
651 // the address is interesting.
652 internal::UniversalPrint(value, os);
653 PrintIfNotEmpty(explanation: listener.str(), os);
654 *os << "\n";
655 }
656 }
657};
658
659// The base case.
660template <>
661class TuplePrefix<0> {
662 public:
663 template <typename MatcherTuple, typename ValueTuple>
664 static bool Matches(const MatcherTuple& /* matcher_tuple */,
665 const ValueTuple& /* value_tuple */) {
666 return true;
667 }
668
669 template <typename MatcherTuple, typename ValueTuple>
670 static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
671 const ValueTuple& /* values */,
672 ::std::ostream* /* os */) {}
673};
674
675// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
676// all matchers in matcher_tuple match the corresponding fields in
677// value_tuple. It is a compiler error if matcher_tuple and
678// value_tuple have different number of fields or incompatible field
679// types.
680template <typename MatcherTuple, typename ValueTuple>
681bool TupleMatches(const MatcherTuple& matcher_tuple,
682 const ValueTuple& value_tuple) {
683 // Makes sure that matcher_tuple and value_tuple have the same
684 // number of fields.
685 static_assert(std::tuple_size<MatcherTuple>::value ==
686 std::tuple_size<ValueTuple>::value,
687 "matcher and value have different numbers of fields");
688 return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
689 value_tuple);
690}
691
692// Describes failures in matching matchers against values. If there
693// is no failure, nothing will be streamed to os.
694template <typename MatcherTuple, typename ValueTuple>
695void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
696 const ValueTuple& values, ::std::ostream* os) {
697 TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
698 matchers, values, os);
699}
700
701// TransformTupleValues and its helper.
702//
703// TransformTupleValuesHelper hides the internal machinery that
704// TransformTupleValues uses to implement a tuple traversal.
705template <typename Tuple, typename Func, typename OutIter>
706class TransformTupleValuesHelper {
707 private:
708 typedef ::std::tuple_size<Tuple> TupleSize;
709
710 public:
711 // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
712 // Returns the final value of 'out' in case the caller needs it.
713 static OutIter Run(Func f, const Tuple& t, OutIter out) {
714 return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
715 }
716
717 private:
718 template <typename Tup, size_t kRemainingSize>
719 struct IterateOverTuple {
720 OutIter operator()(Func f, const Tup& t, OutIter out) const {
721 *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
722 return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
723 }
724 };
725 template <typename Tup>
726 struct IterateOverTuple<Tup, 0> {
727 OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const {
728 return out;
729 }
730 };
731};
732
733// Successively invokes 'f(element)' on each element of the tuple 't',
734// appending each result to the 'out' iterator. Returns the final value
735// of 'out'.
736template <typename Tuple, typename Func, typename OutIter>
737OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
738 return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
739}
740
741// Implements _, a matcher that matches any value of any
742// type. This is a polymorphic matcher, so we need a template type
743// conversion operator to make it appearing as a Matcher<T> for any
744// type T.
745class AnythingMatcher {
746 public:
747 using is_gtest_matcher = void;
748
749 template <typename T>
750 bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
751 return true;
752 }
753 void DescribeTo(std::ostream* os) const { *os << "is anything"; }
754 void DescribeNegationTo(::std::ostream* os) const {
755 // This is mostly for completeness' sake, as it's not very useful
756 // to write Not(A<bool>()). However we cannot completely rule out
757 // such a possibility, and it doesn't hurt to be prepared.
758 *os << "never matches";
759 }
760};
761
762// Implements the polymorphic IsNull() matcher, which matches any raw or smart
763// pointer that is NULL.
764class IsNullMatcher {
765 public:
766 template <typename Pointer>
767 bool MatchAndExplain(const Pointer& p,
768 MatchResultListener* /* listener */) const {
769 return p == nullptr;
770 }
771
772 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
773 void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; }
774};
775
776// Implements the polymorphic NotNull() matcher, which matches any raw or smart
777// pointer that is not NULL.
778class NotNullMatcher {
779 public:
780 template <typename Pointer>
781 bool MatchAndExplain(const Pointer& p,
782 MatchResultListener* /* listener */) const {
783 return p != nullptr;
784 }
785
786 void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
787 void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
788};
789
790// Ref(variable) matches any argument that is a reference to
791// 'variable'. This matcher is polymorphic as it can match any
792// super type of the type of 'variable'.
793//
794// The RefMatcher template class implements Ref(variable). It can
795// only be instantiated with a reference type. This prevents a user
796// from mistakenly using Ref(x) to match a non-reference function
797// argument. For example, the following will righteously cause a
798// compiler error:
799//
800// int n;
801// Matcher<int> m1 = Ref(n); // This won't compile.
802// Matcher<int&> m2 = Ref(n); // This will compile.
803template <typename T>
804class RefMatcher;
805
806template <typename T>
807class RefMatcher<T&> {
808 // Google Mock is a generic framework and thus needs to support
809 // mocking any function types, including those that take non-const
810 // reference arguments. Therefore the template parameter T (and
811 // Super below) can be instantiated to either a const type or a
812 // non-const type.
813 public:
814 // RefMatcher() takes a T& instead of const T&, as we want the
815 // compiler to catch using Ref(const_value) as a matcher for a
816 // non-const reference.
817 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
818
819 template <typename Super>
820 operator Matcher<Super&>() const {
821 // By passing object_ (type T&) to Impl(), which expects a Super&,
822 // we make sure that Super is a super type of T. In particular,
823 // this catches using Ref(const_value) as a matcher for a
824 // non-const reference, as you cannot implicitly convert a const
825 // reference to a non-const reference.
826 return MakeMatcher(new Impl<Super>(object_));
827 }
828
829 private:
830 template <typename Super>
831 class Impl : public MatcherInterface<Super&> {
832 public:
833 explicit Impl(Super& x) : object_(x) {} // NOLINT
834
835 // MatchAndExplain() takes a Super& (as opposed to const Super&)
836 // in order to match the interface MatcherInterface<Super&>.
837 bool MatchAndExplain(Super& x,
838 MatchResultListener* listener) const override {
839 *listener << "which is located @" << static_cast<const void*>(&x);
840 return &x == &object_;
841 }
842
843 void DescribeTo(::std::ostream* os) const override {
844 *os << "references the variable ";
845 UniversalPrinter<Super&>::Print(object_, os);
846 }
847
848 void DescribeNegationTo(::std::ostream* os) const override {
849 *os << "does not reference the variable ";
850 UniversalPrinter<Super&>::Print(object_, os);
851 }
852
853 private:
854 const Super& object_;
855 };
856
857 T& object_;
858};
859
860// Polymorphic helper functions for narrow and wide string matchers.
861inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
862 return String::CaseInsensitiveCStringEquals(lhs, rhs);
863}
864
865inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
866 const wchar_t* rhs) {
867 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
868}
869
870// String comparison for narrow or wide strings that can have embedded NUL
871// characters.
872template <typename StringType>
873bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) {
874 // Are the heads equal?
875 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
876 return false;
877 }
878
879 // Skip the equal heads.
880 const typename StringType::value_type nul = 0;
881 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
882
883 // Are we at the end of either s1 or s2?
884 if (i1 == StringType::npos || i2 == StringType::npos) {
885 return i1 == i2;
886 }
887
888 // Are the tails equal?
889 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
890}
891
892// String matchers.
893
894// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
895template <typename StringType>
896class StrEqualityMatcher {
897 public:
898 StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
899 : string_(std::move(str)),
900 expect_eq_(expect_eq),
901 case_sensitive_(case_sensitive) {}
902
903#if GTEST_INTERNAL_HAS_STRING_VIEW
904 bool MatchAndExplain(const internal::StringView& s,
905 MatchResultListener* listener) const {
906 // This should fail to compile if StringView is used with wide
907 // strings.
908 const StringType& str = std::string(s);
909 return MatchAndExplain(str, listener);
910 }
911#endif // GTEST_INTERNAL_HAS_STRING_VIEW
912
913 // Accepts pointer types, particularly:
914 // const char*
915 // char*
916 // const wchar_t*
917 // wchar_t*
918 template <typename CharType>
919 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
920 if (s == nullptr) {
921 return !expect_eq_;
922 }
923 return MatchAndExplain(StringType(s), listener);
924 }
925
926 // Matches anything that can convert to StringType.
927 //
928 // This is a template, not just a plain function with const StringType&,
929 // because StringView has some interfering non-explicit constructors.
930 template <typename MatcheeStringType>
931 bool MatchAndExplain(const MatcheeStringType& s,
932 MatchResultListener* /* listener */) const {
933 const StringType s2(s);
934 const bool eq = case_sensitive_ ? s2 == string_
935 : CaseInsensitiveStringEquals(s2, string_);
936 return expect_eq_ == eq;
937 }
938
939 void DescribeTo(::std::ostream* os) const {
940 DescribeToHelper(expect_eq: expect_eq_, os);
941 }
942
943 void DescribeNegationTo(::std::ostream* os) const {
944 DescribeToHelper(expect_eq: !expect_eq_, os);
945 }
946
947 private:
948 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
949 *os << (expect_eq ? "is " : "isn't ");
950 *os << "equal to ";
951 if (!case_sensitive_) {
952 *os << "(ignoring case) ";
953 }
954 UniversalPrint(string_, os);
955 }
956
957 const StringType string_;
958 const bool expect_eq_;
959 const bool case_sensitive_;
960};
961
962// Implements the polymorphic HasSubstr(substring) matcher, which
963// can be used as a Matcher<T> as long as T can be converted to a
964// string.
965template <typename StringType>
966class HasSubstrMatcher {
967 public:
968 explicit HasSubstrMatcher(const StringType& substring)
969 : substring_(substring) {}
970
971#if GTEST_INTERNAL_HAS_STRING_VIEW
972 bool MatchAndExplain(const internal::StringView& s,
973 MatchResultListener* listener) const {
974 // This should fail to compile if StringView is used with wide
975 // strings.
976 const StringType& str = std::string(s);
977 return MatchAndExplain(str, listener);
978 }
979#endif // GTEST_INTERNAL_HAS_STRING_VIEW
980
981 // Accepts pointer types, particularly:
982 // const char*
983 // char*
984 // const wchar_t*
985 // wchar_t*
986 template <typename CharType>
987 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
988 return s != nullptr && MatchAndExplain(StringType(s), listener);
989 }
990
991 // Matches anything that can convert to StringType.
992 //
993 // This is a template, not just a plain function with const StringType&,
994 // because StringView has some interfering non-explicit constructors.
995 template <typename MatcheeStringType>
996 bool MatchAndExplain(const MatcheeStringType& s,
997 MatchResultListener* /* listener */) const {
998 return StringType(s).find(substring_) != StringType::npos;
999 }
1000
1001 // Describes what this matcher matches.
1002 void DescribeTo(::std::ostream* os) const {
1003 *os << "has substring ";
1004 UniversalPrint(substring_, os);
1005 }
1006
1007 void DescribeNegationTo(::std::ostream* os) const {
1008 *os << "has no substring ";
1009 UniversalPrint(substring_, os);
1010 }
1011
1012 private:
1013 const StringType substring_;
1014};
1015
1016// Implements the polymorphic StartsWith(substring) matcher, which
1017// can be used as a Matcher<T> as long as T can be converted to a
1018// string.
1019template <typename StringType>
1020class StartsWithMatcher {
1021 public:
1022 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {}
1023
1024#if GTEST_INTERNAL_HAS_STRING_VIEW
1025 bool MatchAndExplain(const internal::StringView& s,
1026 MatchResultListener* listener) const {
1027 // This should fail to compile if StringView is used with wide
1028 // strings.
1029 const StringType& str = std::string(s);
1030 return MatchAndExplain(str, listener);
1031 }
1032#endif // GTEST_INTERNAL_HAS_STRING_VIEW
1033
1034 // Accepts pointer types, particularly:
1035 // const char*
1036 // char*
1037 // const wchar_t*
1038 // wchar_t*
1039 template <typename CharType>
1040 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1041 return s != nullptr && MatchAndExplain(StringType(s), listener);
1042 }
1043
1044 // Matches anything that can convert to StringType.
1045 //
1046 // This is a template, not just a plain function with const StringType&,
1047 // because StringView has some interfering non-explicit constructors.
1048 template <typename MatcheeStringType>
1049 bool MatchAndExplain(const MatcheeStringType& s,
1050 MatchResultListener* /* listener */) const {
1051 const StringType& s2(s);
1052 return s2.length() >= prefix_.length() &&
1053 s2.substr(0, prefix_.length()) == prefix_;
1054 }
1055
1056 void DescribeTo(::std::ostream* os) const {
1057 *os << "starts with ";
1058 UniversalPrint(prefix_, os);
1059 }
1060
1061 void DescribeNegationTo(::std::ostream* os) const {
1062 *os << "doesn't start with ";
1063 UniversalPrint(prefix_, os);
1064 }
1065
1066 private:
1067 const StringType prefix_;
1068};
1069
1070// Implements the polymorphic EndsWith(substring) matcher, which
1071// can be used as a Matcher<T> as long as T can be converted to a
1072// string.
1073template <typename StringType>
1074class EndsWithMatcher {
1075 public:
1076 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1077
1078#if GTEST_INTERNAL_HAS_STRING_VIEW
1079 bool MatchAndExplain(const internal::StringView& s,
1080 MatchResultListener* listener) const {
1081 // This should fail to compile if StringView is used with wide
1082 // strings.
1083 const StringType& str = std::string(s);
1084 return MatchAndExplain(str, listener);
1085 }
1086#endif // GTEST_INTERNAL_HAS_STRING_VIEW
1087
1088 // Accepts pointer types, particularly:
1089 // const char*
1090 // char*
1091 // const wchar_t*
1092 // wchar_t*
1093 template <typename CharType>
1094 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1095 return s != nullptr && MatchAndExplain(StringType(s), listener);
1096 }
1097
1098 // Matches anything that can convert to StringType.
1099 //
1100 // This is a template, not just a plain function with const StringType&,
1101 // because StringView has some interfering non-explicit constructors.
1102 template <typename MatcheeStringType>
1103 bool MatchAndExplain(const MatcheeStringType& s,
1104 MatchResultListener* /* listener */) const {
1105 const StringType& s2(s);
1106 return s2.length() >= suffix_.length() &&
1107 s2.substr(s2.length() - suffix_.length()) == suffix_;
1108 }
1109
1110 void DescribeTo(::std::ostream* os) const {
1111 *os << "ends with ";
1112 UniversalPrint(suffix_, os);
1113 }
1114
1115 void DescribeNegationTo(::std::ostream* os) const {
1116 *os << "doesn't end with ";
1117 UniversalPrint(suffix_, os);
1118 }
1119
1120 private:
1121 const StringType suffix_;
1122};
1123
1124// Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be
1125// used as a Matcher<T> as long as T can be converted to a string.
1126class WhenBase64UnescapedMatcher {
1127 public:
1128 using is_gtest_matcher = void;
1129
1130 explicit WhenBase64UnescapedMatcher(
1131 const Matcher<const std::string&>& internal_matcher)
1132 : internal_matcher_(internal_matcher) {}
1133
1134 // Matches anything that can convert to std::string.
1135 template <typename MatcheeStringType>
1136 bool MatchAndExplain(const MatcheeStringType& s,
1137 MatchResultListener* listener) const {
1138 const std::string s2(s); // NOLINT (needed for working with string_view).
1139 std::string unescaped;
1140 if (!internal::Base64Unescape(encoded: s2, decoded: &unescaped)) {
1141 if (listener != nullptr) {
1142 *listener << "is not a valid base64 escaped string";
1143 }
1144 return false;
1145 }
1146 return MatchPrintAndExplain(value&: unescaped, matcher: internal_matcher_, listener);
1147 }
1148
1149 void DescribeTo(::std::ostream* os) const {
1150 *os << "matches after Base64Unescape ";
1151 internal_matcher_.DescribeTo(os);
1152 }
1153
1154 void DescribeNegationTo(::std::ostream* os) const {
1155 *os << "does not match after Base64Unescape ";
1156 internal_matcher_.DescribeTo(os);
1157 }
1158
1159 private:
1160 const Matcher<const std::string&> internal_matcher_;
1161};
1162
1163// Implements a matcher that compares the two fields of a 2-tuple
1164// using one of the ==, <=, <, etc, operators. The two fields being
1165// compared don't have to have the same type.
1166//
1167// The matcher defined here is polymorphic (for example, Eq() can be
1168// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1169// etc). Therefore we use a template type conversion operator in the
1170// implementation.
1171template <typename D, typename Op>
1172class PairMatchBase {
1173 public:
1174 template <typename T1, typename T2>
1175 operator Matcher<::std::tuple<T1, T2>>() const {
1176 return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1177 }
1178 template <typename T1, typename T2>
1179 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1180 return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1181 }
1182
1183 private:
1184 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1185 return os << D::Desc();
1186 }
1187
1188 template <typename Tuple>
1189 class Impl : public MatcherInterface<Tuple> {
1190 public:
1191 bool MatchAndExplain(Tuple args,
1192 MatchResultListener* /* listener */) const override {
1193 return Op()(::std::get<0>(args), ::std::get<1>(args));
1194 }
1195 void DescribeTo(::std::ostream* os) const override {
1196 *os << "are " << GetDesc;
1197 }
1198 void DescribeNegationTo(::std::ostream* os) const override {
1199 *os << "aren't " << GetDesc;
1200 }
1201 };
1202};
1203
1204class Eq2Matcher : public PairMatchBase<Eq2Matcher, std::equal_to<>> {
1205 public:
1206 static const char* Desc() { return "an equal pair"; }
1207};
1208class Ne2Matcher : public PairMatchBase<Ne2Matcher, std::not_equal_to<>> {
1209 public:
1210 static const char* Desc() { return "an unequal pair"; }
1211};
1212class Lt2Matcher : public PairMatchBase<Lt2Matcher, std::less<>> {
1213 public:
1214 static const char* Desc() { return "a pair where the first < the second"; }
1215};
1216class Gt2Matcher : public PairMatchBase<Gt2Matcher, std::greater<>> {
1217 public:
1218 static const char* Desc() { return "a pair where the first > the second"; }
1219};
1220class Le2Matcher : public PairMatchBase<Le2Matcher, std::less_equal<>> {
1221 public:
1222 static const char* Desc() { return "a pair where the first <= the second"; }
1223};
1224class Ge2Matcher : public PairMatchBase<Ge2Matcher, std::greater_equal<>> {
1225 public:
1226 static const char* Desc() { return "a pair where the first >= the second"; }
1227};
1228
1229// Implements the Not(...) matcher for a particular argument type T.
1230// We do not nest it inside the NotMatcher class template, as that
1231// will prevent different instantiations of NotMatcher from sharing
1232// the same NotMatcherImpl<T> class.
1233template <typename T>
1234class NotMatcherImpl : public MatcherInterface<const T&> {
1235 public:
1236 explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
1237
1238 bool MatchAndExplain(const T& x,
1239 MatchResultListener* listener) const override {
1240 return !matcher_.MatchAndExplain(x, listener);
1241 }
1242
1243 void DescribeTo(::std::ostream* os) const override {
1244 matcher_.DescribeNegationTo(os);
1245 }
1246
1247 void DescribeNegationTo(::std::ostream* os) const override {
1248 matcher_.DescribeTo(os);
1249 }
1250
1251 private:
1252 const Matcher<T> matcher_;
1253};
1254
1255// Implements the Not(m) matcher, which matches a value that doesn't
1256// match matcher m.
1257template <typename InnerMatcher>
1258class NotMatcher {
1259 public:
1260 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1261
1262 // This template type conversion operator allows Not(m) to be used
1263 // to match any type m can match.
1264 template <typename T>
1265 operator Matcher<T>() const {
1266 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1267 }
1268
1269 private:
1270 InnerMatcher matcher_;
1271};
1272
1273// Implements the AllOf(m1, m2) matcher for a particular argument type
1274// T. We do not nest it inside the BothOfMatcher class template, as
1275// that will prevent different instantiations of BothOfMatcher from
1276// sharing the same BothOfMatcherImpl<T> class.
1277template <typename T>
1278class AllOfMatcherImpl : public MatcherInterface<const T&> {
1279 public:
1280 explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers)
1281 : matchers_(std::move(matchers)) {}
1282
1283 void DescribeTo(::std::ostream* os) const override {
1284 *os << "(";
1285 for (size_t i = 0; i < matchers_.size(); ++i) {
1286 if (i != 0) *os << ") and (";
1287 matchers_[i].DescribeTo(os);
1288 }
1289 *os << ")";
1290 }
1291
1292 void DescribeNegationTo(::std::ostream* os) const override {
1293 *os << "(";
1294 for (size_t i = 0; i < matchers_.size(); ++i) {
1295 if (i != 0) *os << ") or (";
1296 matchers_[i].DescribeNegationTo(os);
1297 }
1298 *os << ")";
1299 }
1300
1301 bool MatchAndExplain(const T& x,
1302 MatchResultListener* listener) const override {
1303 // If either matcher1_ or matcher2_ doesn't match x, we only need
1304 // to explain why one of them fails.
1305 std::string all_match_result;
1306
1307 for (size_t i = 0; i < matchers_.size(); ++i) {
1308 StringMatchResultListener slistener;
1309 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1310 if (all_match_result.empty()) {
1311 all_match_result = slistener.str();
1312 } else {
1313 std::string result = slistener.str();
1314 if (!result.empty()) {
1315 all_match_result += ", and ";
1316 all_match_result += result;
1317 }
1318 }
1319 } else {
1320 *listener << slistener.str();
1321 return false;
1322 }
1323 }
1324
1325 // Otherwise we need to explain why *both* of them match.
1326 *listener << all_match_result;
1327 return true;
1328 }
1329
1330 private:
1331 const std::vector<Matcher<T>> matchers_;
1332};
1333
1334// VariadicMatcher is used for the variadic implementation of
1335// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1336// CombiningMatcher<T> is used to recursively combine the provided matchers
1337// (of type Args...).
1338template <template <typename T> class CombiningMatcher, typename... Args>
1339class VariadicMatcher {
1340 public:
1341 VariadicMatcher(const Args&... matchers) // NOLINT
1342 : matchers_(matchers...) {
1343 static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1344 }
1345
1346 VariadicMatcher(const VariadicMatcher&) = default;
1347 VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1348
1349 // This template type conversion operator allows an
1350 // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1351 // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1352 template <typename T>
1353 operator Matcher<T>() const {
1354 std::vector<Matcher<T>> values;
1355 CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1356 return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1357 }
1358
1359 private:
1360 template <typename T, size_t I>
1361 void CreateVariadicMatcher(std::vector<Matcher<T>>* values,
1362 std::integral_constant<size_t, I>) const {
1363 values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1364 CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1365 }
1366
1367 template <typename T>
1368 void CreateVariadicMatcher(
1369 std::vector<Matcher<T>>*,
1370 std::integral_constant<size_t, sizeof...(Args)>) const {}
1371
1372 std::tuple<Args...> matchers_;
1373};
1374
1375template <typename... Args>
1376using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1377
1378// Implements the AnyOf(m1, m2) matcher for a particular argument type
1379// T. We do not nest it inside the AnyOfMatcher class template, as
1380// that will prevent different instantiations of AnyOfMatcher from
1381// sharing the same EitherOfMatcherImpl<T> class.
1382template <typename T>
1383class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1384 public:
1385 explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers)
1386 : matchers_(std::move(matchers)) {}
1387
1388 void DescribeTo(::std::ostream* os) const override {
1389 *os << "(";
1390 for (size_t i = 0; i < matchers_.size(); ++i) {
1391 if (i != 0) *os << ") or (";
1392 matchers_[i].DescribeTo(os);
1393 }
1394 *os << ")";
1395 }
1396
1397 void DescribeNegationTo(::std::ostream* os) const override {
1398 *os << "(";
1399 for (size_t i = 0; i < matchers_.size(); ++i) {
1400 if (i != 0) *os << ") and (";
1401 matchers_[i].DescribeNegationTo(os);
1402 }
1403 *os << ")";
1404 }
1405
1406 bool MatchAndExplain(const T& x,
1407 MatchResultListener* listener) const override {
1408 std::string no_match_result;
1409
1410 // If either matcher1_ or matcher2_ matches x, we just need to
1411 // explain why *one* of them matches.
1412 for (size_t i = 0; i < matchers_.size(); ++i) {
1413 StringMatchResultListener slistener;
1414 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1415 *listener << slistener.str();
1416 return true;
1417 } else {
1418 if (no_match_result.empty()) {
1419 no_match_result = slistener.str();
1420 } else {
1421 std::string result = slistener.str();
1422 if (!result.empty()) {
1423 no_match_result += ", and ";
1424 no_match_result += result;
1425 }
1426 }
1427 }
1428 }
1429
1430 // Otherwise we need to explain why *both* of them fail.
1431 *listener << no_match_result;
1432 return false;
1433 }
1434
1435 private:
1436 const std::vector<Matcher<T>> matchers_;
1437};
1438
1439// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1440template <typename... Args>
1441using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1442
1443// ConditionalMatcher is the implementation of Conditional(cond, m1, m2)
1444template <typename MatcherTrue, typename MatcherFalse>
1445class ConditionalMatcher {
1446 public:
1447 ConditionalMatcher(bool condition, MatcherTrue matcher_true,
1448 MatcherFalse matcher_false)
1449 : condition_(condition),
1450 matcher_true_(std::move(matcher_true)),
1451 matcher_false_(std::move(matcher_false)) {}
1452
1453 template <typename T>
1454 operator Matcher<T>() const { // NOLINT(runtime/explicit)
1455 return condition_ ? SafeMatcherCast<T>(matcher_true_)
1456 : SafeMatcherCast<T>(matcher_false_);
1457 }
1458
1459 private:
1460 bool condition_;
1461 MatcherTrue matcher_true_;
1462 MatcherFalse matcher_false_;
1463};
1464
1465// Wrapper for implementation of Any/AllOfArray().
1466template <template <class> class MatcherImpl, typename T>
1467class SomeOfArrayMatcher {
1468 public:
1469 // Constructs the matcher from a sequence of element values or
1470 // element matchers.
1471 template <typename Iter>
1472 SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1473
1474 template <typename U>
1475 operator Matcher<U>() const { // NOLINT
1476 using RawU = typename std::decay<U>::type;
1477 std::vector<Matcher<RawU>> matchers;
1478 matchers.reserve(matchers_.size());
1479 for (const auto& matcher : matchers_) {
1480 matchers.push_back(MatcherCast<RawU>(matcher));
1481 }
1482 return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1483 }
1484
1485 private:
1486 const ::std::vector<T> matchers_;
1487};
1488
1489template <typename T>
1490using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1491
1492template <typename T>
1493using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1494
1495// Used for implementing Truly(pred), which turns a predicate into a
1496// matcher.
1497template <typename Predicate>
1498class TrulyMatcher {
1499 public:
1500 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1501
1502 // This method template allows Truly(pred) to be used as a matcher
1503 // for type T where T is the argument type of predicate 'pred'. The
1504 // argument is passed by reference as the predicate may be
1505 // interested in the address of the argument.
1506 template <typename T>
1507 bool MatchAndExplain(T& x, // NOLINT
1508 MatchResultListener* listener) const {
1509 // Without the if-statement, MSVC sometimes warns about converting
1510 // a value to bool (warning 4800).
1511 //
1512 // We cannot write 'return !!predicate_(x);' as that doesn't work
1513 // when predicate_(x) returns a class convertible to bool but
1514 // having no operator!().
1515 if (predicate_(x)) return true;
1516 *listener << "didn't satisfy the given predicate";
1517 return false;
1518 }
1519
1520 void DescribeTo(::std::ostream* os) const {
1521 *os << "satisfies the given predicate";
1522 }
1523
1524 void DescribeNegationTo(::std::ostream* os) const {
1525 *os << "doesn't satisfy the given predicate";
1526 }
1527
1528 private:
1529 Predicate predicate_;
1530};
1531
1532// Used for implementing Matches(matcher), which turns a matcher into
1533// a predicate.
1534template <typename M>
1535class MatcherAsPredicate {
1536 public:
1537 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1538
1539 // This template operator() allows Matches(m) to be used as a
1540 // predicate on type T where m is a matcher on type T.
1541 //
1542 // The argument x is passed by reference instead of by value, as
1543 // some matcher may be interested in its address (e.g. as in
1544 // Matches(Ref(n))(x)).
1545 template <typename T>
1546 bool operator()(const T& x) const {
1547 // We let matcher_ commit to a particular type here instead of
1548 // when the MatcherAsPredicate object was constructed. This
1549 // allows us to write Matches(m) where m is a polymorphic matcher
1550 // (e.g. Eq(5)).
1551 //
1552 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1553 // compile when matcher_ has type Matcher<const T&>; if we write
1554 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1555 // when matcher_ has type Matcher<T>; if we just write
1556 // matcher_.Matches(x), it won't compile when matcher_ is
1557 // polymorphic, e.g. Eq(5).
1558 //
1559 // MatcherCast<const T&>() is necessary for making the code work
1560 // in all of the above situations.
1561 return MatcherCast<const T&>(matcher_).Matches(x);
1562 }
1563
1564 private:
1565 M matcher_;
1566};
1567
1568// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1569// argument M must be a type that can be converted to a matcher.
1570template <typename M>
1571class PredicateFormatterFromMatcher {
1572 public:
1573 explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1574
1575 // This template () operator allows a PredicateFormatterFromMatcher
1576 // object to act as a predicate-formatter suitable for using with
1577 // Google Test's EXPECT_PRED_FORMAT1() macro.
1578 template <typename T>
1579 AssertionResult operator()(const char* value_text, const T& x) const {
1580 // We convert matcher_ to a Matcher<const T&> *now* instead of
1581 // when the PredicateFormatterFromMatcher object was constructed,
1582 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1583 // know which type to instantiate it to until we actually see the
1584 // type of x here.
1585 //
1586 // We write SafeMatcherCast<const T&>(matcher_) instead of
1587 // Matcher<const T&>(matcher_), as the latter won't compile when
1588 // matcher_ has type Matcher<T> (e.g. An<int>()).
1589 // We don't write MatcherCast<const T&> either, as that allows
1590 // potentially unsafe downcasting of the matcher argument.
1591 const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1592
1593 // The expected path here is that the matcher should match (i.e. that most
1594 // tests pass) so optimize for this case.
1595 if (matcher.Matches(x)) {
1596 return AssertionSuccess();
1597 }
1598
1599 ::std::stringstream ss;
1600 ss << "Value of: " << value_text << "\n"
1601 << "Expected: ";
1602 matcher.DescribeTo(&ss);
1603
1604 // Rerun the matcher to "PrintAndExplain" the failure.
1605 StringMatchResultListener listener;
1606 if (MatchPrintAndExplain(x, matcher, &listener)) {
1607 ss << "\n The matcher failed on the initial attempt; but passed when "
1608 "rerun to generate the explanation.";
1609 }
1610 ss << "\n Actual: " << listener.str();
1611 return AssertionFailure() << ss.str();
1612 }
1613
1614 private:
1615 const M matcher_;
1616};
1617
1618// A helper function for converting a matcher to a predicate-formatter
1619// without the user needing to explicitly write the type. This is
1620// used for implementing ASSERT_THAT() and EXPECT_THAT().
1621// Implementation detail: 'matcher' is received by-value to force decaying.
1622template <typename M>
1623inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(
1624 M matcher) {
1625 return PredicateFormatterFromMatcher<M>(std::move(matcher));
1626}
1627
1628// Implements the polymorphic IsNan() matcher, which matches any floating type
1629// value that is Nan.
1630class IsNanMatcher {
1631 public:
1632 template <typename FloatType>
1633 bool MatchAndExplain(const FloatType& f,
1634 MatchResultListener* /* listener */) const {
1635 return (::std::isnan)(f);
1636 }
1637
1638 void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1639 void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; }
1640};
1641
1642// Implements the polymorphic floating point equality matcher, which matches
1643// two float values using ULP-based approximation or, optionally, a
1644// user-specified epsilon. The template is meant to be instantiated with
1645// FloatType being either float or double.
1646template <typename FloatType>
1647class FloatingEqMatcher {
1648 public:
1649 // Constructor for FloatingEqMatcher.
1650 // The matcher's input will be compared with expected. The matcher treats two
1651 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1652 // equality comparisons between NANs will always return false. We specify a
1653 // negative max_abs_error_ term to indicate that ULP-based approximation will
1654 // be used for comparison.
1655 FloatingEqMatcher(FloatType expected, bool nan_eq_nan)
1656 : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {}
1657
1658 // Constructor that supports a user-specified max_abs_error that will be used
1659 // for comparison instead of ULP-based approximation. The max absolute
1660 // should be non-negative.
1661 FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1662 FloatType max_abs_error)
1663 : expected_(expected),
1664 nan_eq_nan_(nan_eq_nan),
1665 max_abs_error_(max_abs_error) {
1666 GTEST_CHECK_(max_abs_error >= 0)
1667 << ", where max_abs_error is" << max_abs_error;
1668 }
1669
1670 // Implements floating point equality matcher as a Matcher<T>.
1671 template <typename T>
1672 class Impl : public MatcherInterface<T> {
1673 public:
1674 Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1675 : expected_(expected),
1676 nan_eq_nan_(nan_eq_nan),
1677 max_abs_error_(max_abs_error) {}
1678
1679 bool MatchAndExplain(T value,
1680 MatchResultListener* listener) const override {
1681 const FloatingPoint<FloatType> actual(value), expected(expected_);
1682
1683 // Compares NaNs first, if nan_eq_nan_ is true.
1684 if (actual.is_nan() || expected.is_nan()) {
1685 if (actual.is_nan() && expected.is_nan()) {
1686 return nan_eq_nan_;
1687 }
1688 // One is nan; the other is not nan.
1689 return false;
1690 }
1691 if (HasMaxAbsError()) {
1692 // We perform an equality check so that inf will match inf, regardless
1693 // of error bounds. If the result of value - expected_ would result in
1694 // overflow or if either value is inf, the default result is infinity,
1695 // which should only match if max_abs_error_ is also infinity.
1696 if (value == expected_) {
1697 return true;
1698 }
1699
1700 const FloatType diff = value - expected_;
1701 if (::std::fabs(diff) <= max_abs_error_) {
1702 return true;
1703 }
1704
1705 if (listener->IsInterested()) {
1706 *listener << "which is " << diff << " from " << expected_;
1707 }
1708 return false;
1709 } else {
1710 return actual.AlmostEquals(expected);
1711 }
1712 }
1713
1714 void DescribeTo(::std::ostream* os) const override {
1715 // os->precision() returns the previously set precision, which we
1716 // store to restore the ostream to its original configuration
1717 // after outputting.
1718 const ::std::streamsize old_precision =
1719 os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1720 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1721 if (nan_eq_nan_) {
1722 *os << "is NaN";
1723 } else {
1724 *os << "never matches";
1725 }
1726 } else {
1727 *os << "is approximately " << expected_;
1728 if (HasMaxAbsError()) {
1729 *os << " (absolute error <= " << max_abs_error_ << ")";
1730 }
1731 }
1732 os->precision(prec: old_precision);
1733 }
1734
1735 void DescribeNegationTo(::std::ostream* os) const override {
1736 // As before, get original precision.
1737 const ::std::streamsize old_precision =
1738 os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1739 if (FloatingPoint<FloatType>(expected_).is_nan()) {
1740 if (nan_eq_nan_) {
1741 *os << "isn't NaN";
1742 } else {
1743 *os << "is anything";
1744 }
1745 } else {
1746 *os << "isn't approximately " << expected_;
1747 if (HasMaxAbsError()) {
1748 *os << " (absolute error > " << max_abs_error_ << ")";
1749 }
1750 }
1751 // Restore original precision.
1752 os->precision(prec: old_precision);
1753 }
1754
1755 private:
1756 bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
1757
1758 const FloatType expected_;
1759 const bool nan_eq_nan_;
1760 // max_abs_error will be used for value comparison when >= 0.
1761 const FloatType max_abs_error_;
1762 };
1763
1764 // The following 3 type conversion operators allow FloatEq(expected) and
1765 // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1766 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1767 operator Matcher<FloatType>() const {
1768 return MakeMatcher(
1769 new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1770 }
1771
1772 operator Matcher<const FloatType&>() const {
1773 return MakeMatcher(
1774 new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1775 }
1776
1777 operator Matcher<FloatType&>() const {
1778 return MakeMatcher(
1779 new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1780 }
1781
1782 private:
1783 const FloatType expected_;
1784 const bool nan_eq_nan_;
1785 // max_abs_error will be used for value comparison when >= 0.
1786 const FloatType max_abs_error_;
1787};
1788
1789// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1790// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1791// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1792// against y. The former implements "Eq", the latter "Near". At present, there
1793// is no version that compares NaNs as equal.
1794template <typename FloatType>
1795class FloatingEq2Matcher {
1796 public:
1797 FloatingEq2Matcher() { Init(max_abs_error_val: -1, nan_eq_nan_val: false); }
1798
1799 explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(max_abs_error_val: -1, nan_eq_nan_val: nan_eq_nan); }
1800
1801 explicit FloatingEq2Matcher(FloatType max_abs_error) {
1802 Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: false);
1803 }
1804
1805 FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1806 Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: nan_eq_nan);
1807 }
1808
1809 template <typename T1, typename T2>
1810 operator Matcher<::std::tuple<T1, T2>>() const {
1811 return MakeMatcher(
1812 new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1813 }
1814 template <typename T1, typename T2>
1815 operator Matcher<const ::std::tuple<T1, T2>&>() const {
1816 return MakeMatcher(
1817 new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1818 }
1819
1820 private:
1821 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1822 return os << "an almost-equal pair";
1823 }
1824
1825 template <typename Tuple>
1826 class Impl : public MatcherInterface<Tuple> {
1827 public:
1828 Impl(FloatType max_abs_error, bool nan_eq_nan)
1829 : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
1830
1831 bool MatchAndExplain(Tuple args,
1832 MatchResultListener* listener) const override {
1833 if (max_abs_error_ == -1) {
1834 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1835 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1836 ::std::get<1>(args), listener);
1837 } else {
1838 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1839 max_abs_error_);
1840 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1841 ::std::get<1>(args), listener);
1842 }
1843 }
1844 void DescribeTo(::std::ostream* os) const override {
1845 *os << "are " << GetDesc;
1846 }
1847 void DescribeNegationTo(::std::ostream* os) const override {
1848 *os << "aren't " << GetDesc;
1849 }
1850
1851 private:
1852 FloatType max_abs_error_;
1853 const bool nan_eq_nan_;
1854 };
1855
1856 void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1857 max_abs_error_ = max_abs_error_val;
1858 nan_eq_nan_ = nan_eq_nan_val;
1859 }
1860 FloatType max_abs_error_;
1861 bool nan_eq_nan_;
1862};
1863
1864// Implements the Pointee(m) matcher for matching a pointer whose
1865// pointee matches matcher m. The pointer can be either raw or smart.
1866template <typename InnerMatcher>
1867class PointeeMatcher {
1868 public:
1869 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1870
1871 // This type conversion operator template allows Pointee(m) to be
1872 // used as a matcher for any pointer type whose pointee type is
1873 // compatible with the inner matcher, where type Pointer can be
1874 // either a raw pointer or a smart pointer.
1875 //
1876 // The reason we do this instead of relying on
1877 // MakePolymorphicMatcher() is that the latter is not flexible
1878 // enough for implementing the DescribeTo() method of Pointee().
1879 template <typename Pointer>
1880 operator Matcher<Pointer>() const {
1881 return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1882 }
1883
1884 private:
1885 // The monomorphic implementation that works for a particular pointer type.
1886 template <typename Pointer>
1887 class Impl : public MatcherInterface<Pointer> {
1888 public:
1889 using Pointee =
1890 typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1891 Pointer)>::element_type;
1892
1893 explicit Impl(const InnerMatcher& matcher)
1894 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1895
1896 void DescribeTo(::std::ostream* os) const override {
1897 *os << "points to a value that ";
1898 matcher_.DescribeTo(os);
1899 }
1900
1901 void DescribeNegationTo(::std::ostream* os) const override {
1902 *os << "does not point to a value that ";
1903 matcher_.DescribeTo(os);
1904 }
1905
1906 bool MatchAndExplain(Pointer pointer,
1907 MatchResultListener* listener) const override {
1908 if (GetRawPointer(pointer) == nullptr) return false;
1909
1910 *listener << "which points to ";
1911 return MatchPrintAndExplain(*pointer, matcher_, listener);
1912 }
1913
1914 private:
1915 const Matcher<const Pointee&> matcher_;
1916 };
1917
1918 const InnerMatcher matcher_;
1919};
1920
1921// Implements the Pointer(m) matcher
1922// Implements the Pointer(m) matcher for matching a pointer that matches matcher
1923// m. The pointer can be either raw or smart, and will match `m` against the
1924// raw pointer.
1925template <typename InnerMatcher>
1926class PointerMatcher {
1927 public:
1928 explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1929
1930 // This type conversion operator template allows Pointer(m) to be
1931 // used as a matcher for any pointer type whose pointer type is
1932 // compatible with the inner matcher, where type PointerType can be
1933 // either a raw pointer or a smart pointer.
1934 //
1935 // The reason we do this instead of relying on
1936 // MakePolymorphicMatcher() is that the latter is not flexible
1937 // enough for implementing the DescribeTo() method of Pointer().
1938 template <typename PointerType>
1939 operator Matcher<PointerType>() const { // NOLINT
1940 return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1941 }
1942
1943 private:
1944 // The monomorphic implementation that works for a particular pointer type.
1945 template <typename PointerType>
1946 class Impl : public MatcherInterface<PointerType> {
1947 public:
1948 using Pointer =
1949 const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1950 PointerType)>::element_type*;
1951
1952 explicit Impl(const InnerMatcher& matcher)
1953 : matcher_(MatcherCast<Pointer>(matcher)) {}
1954
1955 void DescribeTo(::std::ostream* os) const override {
1956 *os << "is a pointer that ";
1957 matcher_.DescribeTo(os);
1958 }
1959
1960 void DescribeNegationTo(::std::ostream* os) const override {
1961 *os << "is not a pointer that ";
1962 matcher_.DescribeTo(os);
1963 }
1964
1965 bool MatchAndExplain(PointerType pointer,
1966 MatchResultListener* listener) const override {
1967 *listener << "which is a pointer that ";
1968 Pointer p = GetRawPointer(pointer);
1969 return MatchPrintAndExplain(p, matcher_, listener);
1970 }
1971
1972 private:
1973 Matcher<Pointer> matcher_;
1974 };
1975
1976 const InnerMatcher matcher_;
1977};
1978
1979#if GTEST_HAS_RTTI
1980// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1981// reference that matches inner_matcher when dynamic_cast<T> is applied.
1982// The result of dynamic_cast<To> is forwarded to the inner matcher.
1983// If To is a pointer and the cast fails, the inner matcher will receive NULL.
1984// If To is a reference and the cast fails, this matcher returns false
1985// immediately.
1986template <typename To>
1987class WhenDynamicCastToMatcherBase {
1988 public:
1989 explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
1990 : matcher_(matcher) {}
1991
1992 void DescribeTo(::std::ostream* os) const {
1993 GetCastTypeDescription(os);
1994 matcher_.DescribeTo(os);
1995 }
1996
1997 void DescribeNegationTo(::std::ostream* os) const {
1998 GetCastTypeDescription(os);
1999 matcher_.DescribeNegationTo(os);
2000 }
2001
2002 protected:
2003 const Matcher<To> matcher_;
2004
2005 static std::string GetToName() { return GetTypeName<To>(); }
2006
2007 private:
2008 static void GetCastTypeDescription(::std::ostream* os) {
2009 *os << "when dynamic_cast to " << GetToName() << ", ";
2010 }
2011};
2012
2013// Primary template.
2014// To is a pointer. Cast and forward the result.
2015template <typename To>
2016class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2017 public:
2018 explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2019 : WhenDynamicCastToMatcherBase<To>(matcher) {}
2020
2021 template <typename From>
2022 bool MatchAndExplain(From from, MatchResultListener* listener) const {
2023 To to = dynamic_cast<To>(from);
2024 return MatchPrintAndExplain(to, this->matcher_, listener);
2025 }
2026};
2027
2028// Specialize for references.
2029// In this case we return false if the dynamic_cast fails.
2030template <typename To>
2031class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2032 public:
2033 explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2034 : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2035
2036 template <typename From>
2037 bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2038 // We don't want an std::bad_cast here, so do the cast with pointers.
2039 To* to = dynamic_cast<To*>(&from);
2040 if (to == nullptr) {
2041 *listener << "which cannot be dynamic_cast to " << this->GetToName();
2042 return false;
2043 }
2044 return MatchPrintAndExplain(*to, this->matcher_, listener);
2045 }
2046};
2047#endif // GTEST_HAS_RTTI
2048
2049// Implements the Field() matcher for matching a field (i.e. member
2050// variable) of an object.
2051template <typename Class, typename FieldType>
2052class FieldMatcher {
2053 public:
2054 FieldMatcher(FieldType Class::*field,
2055 const Matcher<const FieldType&>& matcher)
2056 : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2057
2058 FieldMatcher(const std::string& field_name, FieldType Class::*field,
2059 const Matcher<const FieldType&>& matcher)
2060 : field_(field),
2061 matcher_(matcher),
2062 whose_field_("whose field `" + field_name + "` ") {}
2063
2064 void DescribeTo(::std::ostream* os) const {
2065 *os << "is an object " << whose_field_;
2066 matcher_.DescribeTo(os);
2067 }
2068
2069 void DescribeNegationTo(::std::ostream* os) const {
2070 *os << "is an object " << whose_field_;
2071 matcher_.DescribeNegationTo(os);
2072 }
2073
2074 template <typename T>
2075 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2076 // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2077 // a compiler bug, and can now be removed.
2078 return MatchAndExplainImpl(
2079 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2080 value, listener);
2081 }
2082
2083 private:
2084 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2085 const Class& obj,
2086 MatchResultListener* listener) const {
2087 *listener << whose_field_ << "is ";
2088 return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2089 }
2090
2091 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2092 MatchResultListener* listener) const {
2093 if (p == nullptr) return false;
2094
2095 *listener << "which points to an object ";
2096 // Since *p has a field, it must be a class/struct/union type and
2097 // thus cannot be a pointer. Therefore we pass false_type() as
2098 // the first argument.
2099 return MatchAndExplainImpl(std::false_type(), *p, listener);
2100 }
2101
2102 const FieldType Class::*field_;
2103 const Matcher<const FieldType&> matcher_;
2104
2105 // Contains either "whose given field " if the name of the field is unknown
2106 // or "whose field `name_of_field` " if the name is known.
2107 const std::string whose_field_;
2108};
2109
2110// Implements the Property() matcher for matching a property
2111// (i.e. return value of a getter method) of an object.
2112//
2113// Property is a const-qualified member function of Class returning
2114// PropertyType.
2115template <typename Class, typename PropertyType, typename Property>
2116class PropertyMatcher {
2117 public:
2118 typedef const PropertyType& RefToConstProperty;
2119
2120 PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2121 : property_(property),
2122 matcher_(matcher),
2123 whose_property_("whose given property ") {}
2124
2125 PropertyMatcher(const std::string& property_name, Property property,
2126 const Matcher<RefToConstProperty>& matcher)
2127 : property_(property),
2128 matcher_(matcher),
2129 whose_property_("whose property `" + property_name + "` ") {}
2130
2131 void DescribeTo(::std::ostream* os) const {
2132 *os << "is an object " << whose_property_;
2133 matcher_.DescribeTo(os);
2134 }
2135
2136 void DescribeNegationTo(::std::ostream* os) const {
2137 *os << "is an object " << whose_property_;
2138 matcher_.DescribeNegationTo(os);
2139 }
2140
2141 template <typename T>
2142 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2143 return MatchAndExplainImpl(
2144 typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2145 value, listener);
2146 }
2147
2148 private:
2149 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2150 const Class& obj,
2151 MatchResultListener* listener) const {
2152 *listener << whose_property_ << "is ";
2153 // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2154 // which takes a non-const reference as argument.
2155 RefToConstProperty result = (obj.*property_)();
2156 return MatchPrintAndExplain(result, matcher_, listener);
2157 }
2158
2159 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2160 MatchResultListener* listener) const {
2161 if (p == nullptr) return false;
2162
2163 *listener << "which points to an object ";
2164 // Since *p has a property method, it must be a class/struct/union
2165 // type and thus cannot be a pointer. Therefore we pass
2166 // false_type() as the first argument.
2167 return MatchAndExplainImpl(std::false_type(), *p, listener);
2168 }
2169
2170 Property property_;
2171 const Matcher<RefToConstProperty> matcher_;
2172
2173 // Contains either "whose given property " if the name of the property is
2174 // unknown or "whose property `name_of_property` " if the name is known.
2175 const std::string whose_property_;
2176};
2177
2178// Type traits specifying various features of different functors for ResultOf.
2179// The default template specifies features for functor objects.
2180template <typename Functor>
2181struct CallableTraits {
2182 typedef Functor StorageType;
2183
2184 static void CheckIsValid(Functor /* functor */) {}
2185
2186 template <typename T>
2187 static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2188 return f(arg);
2189 }
2190};
2191
2192// Specialization for function pointers.
2193template <typename ArgType, typename ResType>
2194struct CallableTraits<ResType (*)(ArgType)> {
2195 typedef ResType ResultType;
2196 typedef ResType (*StorageType)(ArgType);
2197
2198 static void CheckIsValid(ResType (*f)(ArgType)) {
2199 GTEST_CHECK_(f != nullptr)
2200 << "NULL function pointer is passed into ResultOf().";
2201 }
2202 template <typename T>
2203 static ResType Invoke(ResType (*f)(ArgType), T arg) {
2204 return (*f)(arg);
2205 }
2206};
2207
2208// Implements the ResultOf() matcher for matching a return value of a
2209// unary function of an object.
2210template <typename Callable, typename InnerMatcher>
2211class ResultOfMatcher {
2212 public:
2213 ResultOfMatcher(Callable callable, InnerMatcher matcher)
2214 : ResultOfMatcher(/*result_description=*/"", std::move(callable),
2215 std::move(matcher)) {}
2216
2217 ResultOfMatcher(const std::string& result_description, Callable callable,
2218 InnerMatcher matcher)
2219 : result_description_(result_description),
2220 callable_(std::move(callable)),
2221 matcher_(std::move(matcher)) {
2222 CallableTraits<Callable>::CheckIsValid(callable_);
2223 }
2224
2225 template <typename T>
2226 operator Matcher<T>() const {
2227 return Matcher<T>(
2228 new Impl<const T&>(result_description_, callable_, matcher_));
2229 }
2230
2231 private:
2232 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2233
2234 template <typename T>
2235 class Impl : public MatcherInterface<T> {
2236 using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2237 std::declval<CallableStorageType>(), std::declval<T>()));
2238
2239 public:
2240 template <typename M>
2241 Impl(const std::string& result_description,
2242 const CallableStorageType& callable, const M& matcher)
2243 : result_description_(result_description),
2244 callable_(callable),
2245 matcher_(MatcherCast<ResultType>(matcher)) {}
2246
2247 void DescribeTo(::std::ostream* os) const override {
2248 if (result_description_.empty()) {
2249 *os << "is mapped by the given callable to a value that ";
2250 } else {
2251 *os << "whose " << result_description_ << " ";
2252 }
2253 matcher_.DescribeTo(os);
2254 }
2255
2256 void DescribeNegationTo(::std::ostream* os) const override {
2257 if (result_description_.empty()) {
2258 *os << "is mapped by the given callable to a value that ";
2259 } else {
2260 *os << "whose " << result_description_ << " ";
2261 }
2262 matcher_.DescribeNegationTo(os);
2263 }
2264
2265 bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2266 if (result_description_.empty()) {
2267 *listener << "which is mapped by the given callable to ";
2268 } else {
2269 *listener << "whose " << result_description_ << " is ";
2270 }
2271 // Cannot pass the return value directly to MatchPrintAndExplain, which
2272 // takes a non-const reference as argument.
2273 // Also, specifying template argument explicitly is needed because T could
2274 // be a non-const reference (e.g. Matcher<Uncopyable&>).
2275 ResultType result =
2276 CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2277 return MatchPrintAndExplain(result, matcher_, listener);
2278 }
2279
2280 private:
2281 const std::string result_description_;
2282 // Functors often define operator() as non-const method even though
2283 // they are actually stateless. But we need to use them even when
2284 // 'this' is a const pointer. It's the user's responsibility not to
2285 // use stateful callables with ResultOf(), which doesn't guarantee
2286 // how many times the callable will be invoked.
2287 mutable CallableStorageType callable_;
2288 const Matcher<ResultType> matcher_;
2289 }; // class Impl
2290
2291 const std::string result_description_;
2292 const CallableStorageType callable_;
2293 const InnerMatcher matcher_;
2294};
2295
2296// Implements a matcher that checks the size of an STL-style container.
2297template <typename SizeMatcher>
2298class SizeIsMatcher {
2299 public:
2300 explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2301 : size_matcher_(size_matcher) {}
2302
2303 template <typename Container>
2304 operator Matcher<Container>() const {
2305 return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2306 }
2307
2308 template <typename Container>
2309 class Impl : public MatcherInterface<Container> {
2310 public:
2311 using SizeType = decltype(std::declval<Container>().size());
2312 explicit Impl(const SizeMatcher& size_matcher)
2313 : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2314
2315 void DescribeTo(::std::ostream* os) const override {
2316 *os << "has a size that ";
2317 size_matcher_.DescribeTo(os);
2318 }
2319 void DescribeNegationTo(::std::ostream* os) const override {
2320 *os << "has a size that ";
2321 size_matcher_.DescribeNegationTo(os);
2322 }
2323
2324 bool MatchAndExplain(Container container,
2325 MatchResultListener* listener) const override {
2326 SizeType size = container.size();
2327 StringMatchResultListener size_listener;
2328 const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2329 *listener << "whose size " << size
2330 << (result ? " matches" : " doesn't match");
2331 PrintIfNotEmpty(explanation: size_listener.str(), os: listener->stream());
2332 return result;
2333 }
2334
2335 private:
2336 const Matcher<SizeType> size_matcher_;
2337 };
2338
2339 private:
2340 const SizeMatcher size_matcher_;
2341};
2342
2343// Implements a matcher that checks the begin()..end() distance of an STL-style
2344// container.
2345template <typename DistanceMatcher>
2346class BeginEndDistanceIsMatcher {
2347 public:
2348 explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2349 : distance_matcher_(distance_matcher) {}
2350
2351 template <typename Container>
2352 operator Matcher<Container>() const {
2353 return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2354 }
2355
2356 template <typename Container>
2357 class Impl : public MatcherInterface<Container> {
2358 public:
2359 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2360 Container)>
2361 ContainerView;
2362 typedef typename std::iterator_traits<
2363 typename ContainerView::type::const_iterator>::difference_type
2364 DistanceType;
2365 explicit Impl(const DistanceMatcher& distance_matcher)
2366 : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2367
2368 void DescribeTo(::std::ostream* os) const override {
2369 *os << "distance between begin() and end() ";
2370 distance_matcher_.DescribeTo(os);
2371 }
2372 void DescribeNegationTo(::std::ostream* os) const override {
2373 *os << "distance between begin() and end() ";
2374 distance_matcher_.DescribeNegationTo(os);
2375 }
2376
2377 bool MatchAndExplain(Container container,
2378 MatchResultListener* listener) const override {
2379 using std::begin;
2380 using std::end;
2381 DistanceType distance = std::distance(begin(container), end(container));
2382 StringMatchResultListener distance_listener;
2383 const bool result =
2384 distance_matcher_.MatchAndExplain(distance, &distance_listener);
2385 *listener << "whose distance between begin() and end() " << distance
2386 << (result ? " matches" : " doesn't match");
2387 PrintIfNotEmpty(explanation: distance_listener.str(), os: listener->stream());
2388 return result;
2389 }
2390
2391 private:
2392 const Matcher<DistanceType> distance_matcher_;
2393 };
2394
2395 private:
2396 const DistanceMatcher distance_matcher_;
2397};
2398
2399// Implements an equality matcher for any STL-style container whose elements
2400// support ==. This matcher is like Eq(), but its failure explanations provide
2401// more detailed information that is useful when the container is used as a set.
2402// The failure message reports elements that are in one of the operands but not
2403// the other. The failure messages do not report duplicate or out-of-order
2404// elements in the containers (which don't properly matter to sets, but can
2405// occur if the containers are vectors or lists, for example).
2406//
2407// Uses the container's const_iterator, value_type, operator ==,
2408// begin(), and end().
2409template <typename Container>
2410class ContainerEqMatcher {
2411 public:
2412 typedef internal::StlContainerView<Container> View;
2413 typedef typename View::type StlContainer;
2414 typedef typename View::const_reference StlContainerReference;
2415
2416 static_assert(!std::is_const<Container>::value,
2417 "Container type must not be const");
2418 static_assert(!std::is_reference<Container>::value,
2419 "Container type must not be a reference");
2420
2421 // We make a copy of expected in case the elements in it are modified
2422 // after this matcher is created.
2423 explicit ContainerEqMatcher(const Container& expected)
2424 : expected_(View::Copy(expected)) {}
2425
2426 void DescribeTo(::std::ostream* os) const {
2427 *os << "equals ";
2428 UniversalPrint(expected_, os);
2429 }
2430 void DescribeNegationTo(::std::ostream* os) const {
2431 *os << "does not equal ";
2432 UniversalPrint(expected_, os);
2433 }
2434
2435 template <typename LhsContainer>
2436 bool MatchAndExplain(const LhsContainer& lhs,
2437 MatchResultListener* listener) const {
2438 typedef internal::StlContainerView<
2439 typename std::remove_const<LhsContainer>::type>
2440 LhsView;
2441 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2442 if (lhs_stl_container == expected_) return true;
2443
2444 ::std::ostream* const os = listener->stream();
2445 if (os != nullptr) {
2446 // Something is different. Check for extra values first.
2447 bool printed_header = false;
2448 for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end();
2449 ++it) {
2450 if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2451 expected_.end()) {
2452 if (printed_header) {
2453 *os << ", ";
2454 } else {
2455 *os << "which has these unexpected elements: ";
2456 printed_header = true;
2457 }
2458 UniversalPrint(*it, os);
2459 }
2460 }
2461
2462 // Now check for missing values.
2463 bool printed_header2 = false;
2464 for (auto it = expected_.begin(); it != expected_.end(); ++it) {
2465 if (internal::ArrayAwareFind(lhs_stl_container.begin(),
2466 lhs_stl_container.end(),
2467 *it) == lhs_stl_container.end()) {
2468 if (printed_header2) {
2469 *os << ", ";
2470 } else {
2471 *os << (printed_header ? ",\nand" : "which")
2472 << " doesn't have these expected elements: ";
2473 printed_header2 = true;
2474 }
2475 UniversalPrint(*it, os);
2476 }
2477 }
2478 }
2479
2480 return false;
2481 }
2482
2483 private:
2484 const StlContainer expected_;
2485};
2486
2487// A comparator functor that uses the < operator to compare two values.
2488struct LessComparator {
2489 template <typename T, typename U>
2490 bool operator()(const T& lhs, const U& rhs) const {
2491 return lhs < rhs;
2492 }
2493};
2494
2495// Implements WhenSortedBy(comparator, container_matcher).
2496template <typename Comparator, typename ContainerMatcher>
2497class WhenSortedByMatcher {
2498 public:
2499 WhenSortedByMatcher(const Comparator& comparator,
2500 const ContainerMatcher& matcher)
2501 : comparator_(comparator), matcher_(matcher) {}
2502
2503 template <typename LhsContainer>
2504 operator Matcher<LhsContainer>() const {
2505 return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2506 }
2507
2508 template <typename LhsContainer>
2509 class Impl : public MatcherInterface<LhsContainer> {
2510 public:
2511 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2512 LhsContainer)>
2513 LhsView;
2514 typedef typename LhsView::type LhsStlContainer;
2515 typedef typename LhsView::const_reference LhsStlContainerReference;
2516 // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2517 // so that we can match associative containers.
2518 typedef
2519 typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type
2520 LhsValue;
2521
2522 Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2523 : comparator_(comparator), matcher_(matcher) {}
2524
2525 void DescribeTo(::std::ostream* os) const override {
2526 *os << "(when sorted) ";
2527 matcher_.DescribeTo(os);
2528 }
2529
2530 void DescribeNegationTo(::std::ostream* os) const override {
2531 *os << "(when sorted) ";
2532 matcher_.DescribeNegationTo(os);
2533 }
2534
2535 bool MatchAndExplain(LhsContainer lhs,
2536 MatchResultListener* listener) const override {
2537 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2538 ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2539 lhs_stl_container.end());
2540 ::std::sort(sorted_container.begin(), sorted_container.end(),
2541 comparator_);
2542
2543 if (!listener->IsInterested()) {
2544 // If the listener is not interested, we do not need to
2545 // construct the inner explanation.
2546 return matcher_.Matches(sorted_container);
2547 }
2548
2549 *listener << "which is ";
2550 UniversalPrint(sorted_container, listener->stream());
2551 *listener << " when sorted";
2552
2553 StringMatchResultListener inner_listener;
2554 const bool match =
2555 matcher_.MatchAndExplain(sorted_container, &inner_listener);
2556 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
2557 return match;
2558 }
2559
2560 private:
2561 const Comparator comparator_;
2562 const Matcher<const ::std::vector<LhsValue>&> matcher_;
2563
2564 Impl(const Impl&) = delete;
2565 Impl& operator=(const Impl&) = delete;
2566 };
2567
2568 private:
2569 const Comparator comparator_;
2570 const ContainerMatcher matcher_;
2571};
2572
2573// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
2574// must be able to be safely cast to Matcher<std::tuple<const T1&, const
2575// T2&> >, where T1 and T2 are the types of elements in the LHS
2576// container and the RHS container respectively.
2577template <typename TupleMatcher, typename RhsContainer>
2578class PointwiseMatcher {
2579 static_assert(
2580 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2581 "use UnorderedPointwise with hash tables");
2582
2583 public:
2584 typedef internal::StlContainerView<RhsContainer> RhsView;
2585 typedef typename RhsView::type RhsStlContainer;
2586 typedef typename RhsStlContainer::value_type RhsValue;
2587
2588 static_assert(!std::is_const<RhsContainer>::value,
2589 "RhsContainer type must not be const");
2590 static_assert(!std::is_reference<RhsContainer>::value,
2591 "RhsContainer type must not be a reference");
2592
2593 // Like ContainerEq, we make a copy of rhs in case the elements in
2594 // it are modified after this matcher is created.
2595 PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2596 : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2597
2598 template <typename LhsContainer>
2599 operator Matcher<LhsContainer>() const {
2600 static_assert(
2601 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2602 "use UnorderedPointwise with hash tables");
2603
2604 return Matcher<LhsContainer>(
2605 new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2606 }
2607
2608 template <typename LhsContainer>
2609 class Impl : public MatcherInterface<LhsContainer> {
2610 public:
2611 typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2612 LhsContainer)>
2613 LhsView;
2614 typedef typename LhsView::type LhsStlContainer;
2615 typedef typename LhsView::const_reference LhsStlContainerReference;
2616 typedef typename LhsStlContainer::value_type LhsValue;
2617 // We pass the LHS value and the RHS value to the inner matcher by
2618 // reference, as they may be expensive to copy. We must use tuple
2619 // instead of pair here, as a pair cannot hold references (C++ 98,
2620 // 20.2.2 [lib.pairs]).
2621 typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2622
2623 Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2624 // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2625 : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2626 rhs_(rhs) {}
2627
2628 void DescribeTo(::std::ostream* os) const override {
2629 *os << "contains " << rhs_.size()
2630 << " values, where each value and its corresponding value in ";
2631 UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2632 *os << " ";
2633 mono_tuple_matcher_.DescribeTo(os);
2634 }
2635 void DescribeNegationTo(::std::ostream* os) const override {
2636 *os << "doesn't contain exactly " << rhs_.size()
2637 << " values, or contains a value x at some index i"
2638 << " where x and the i-th value of ";
2639 UniversalPrint(rhs_, os);
2640 *os << " ";
2641 mono_tuple_matcher_.DescribeNegationTo(os);
2642 }
2643
2644 bool MatchAndExplain(LhsContainer lhs,
2645 MatchResultListener* listener) const override {
2646 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2647 const size_t actual_size = lhs_stl_container.size();
2648 if (actual_size != rhs_.size()) {
2649 *listener << "which contains " << actual_size << " values";
2650 return false;
2651 }
2652
2653 auto left = lhs_stl_container.begin();
2654 auto right = rhs_.begin();
2655 for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2656 if (listener->IsInterested()) {
2657 StringMatchResultListener inner_listener;
2658 // Create InnerMatcherArg as a temporarily object to avoid it outlives
2659 // *left and *right. Dereference or the conversion to `const T&` may
2660 // return temp objects, e.g. for vector<bool>.
2661 if (!mono_tuple_matcher_.MatchAndExplain(
2662 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2663 ImplicitCast_<const RhsValue&>(*right)),
2664 &inner_listener)) {
2665 *listener << "where the value pair (";
2666 UniversalPrint(*left, listener->stream());
2667 *listener << ", ";
2668 UniversalPrint(*right, listener->stream());
2669 *listener << ") at index #" << i << " don't match";
2670 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
2671 return false;
2672 }
2673 } else {
2674 if (!mono_tuple_matcher_.Matches(
2675 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2676 ImplicitCast_<const RhsValue&>(*right))))
2677 return false;
2678 }
2679 }
2680
2681 return true;
2682 }
2683
2684 private:
2685 const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2686 const RhsStlContainer rhs_;
2687 };
2688
2689 private:
2690 const TupleMatcher tuple_matcher_;
2691 const RhsStlContainer rhs_;
2692};
2693
2694// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2695template <typename Container>
2696class QuantifierMatcherImpl : public MatcherInterface<Container> {
2697 public:
2698 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2699 typedef StlContainerView<RawContainer> View;
2700 typedef typename View::type StlContainer;
2701 typedef typename View::const_reference StlContainerReference;
2702 typedef typename StlContainer::value_type Element;
2703
2704 template <typename InnerMatcher>
2705 explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2706 : inner_matcher_(
2707 testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2708
2709 // Checks whether:
2710 // * All elements in the container match, if all_elements_should_match.
2711 // * Any element in the container matches, if !all_elements_should_match.
2712 bool MatchAndExplainImpl(bool all_elements_should_match, Container container,
2713 MatchResultListener* listener) const {
2714 StlContainerReference stl_container = View::ConstReference(container);
2715 size_t i = 0;
2716 for (auto it = stl_container.begin(); it != stl_container.end();
2717 ++it, ++i) {
2718 StringMatchResultListener inner_listener;
2719 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2720
2721 if (matches != all_elements_should_match) {
2722 *listener << "whose element #" << i
2723 << (matches ? " matches" : " doesn't match");
2724 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
2725 return !all_elements_should_match;
2726 }
2727 }
2728 return all_elements_should_match;
2729 }
2730
2731 bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher,
2732 Container container,
2733 MatchResultListener* listener) const {
2734 StlContainerReference stl_container = View::ConstReference(container);
2735 size_t i = 0;
2736 std::vector<size_t> match_elements;
2737 for (auto it = stl_container.begin(); it != stl_container.end();
2738 ++it, ++i) {
2739 StringMatchResultListener inner_listener;
2740 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2741 if (matches) {
2742 match_elements.push_back(x: i);
2743 }
2744 }
2745 if (listener->IsInterested()) {
2746 if (match_elements.empty()) {
2747 *listener << "has no element that matches";
2748 } else if (match_elements.size() == 1) {
2749 *listener << "whose element #" << match_elements[0] << " matches";
2750 } else {
2751 *listener << "whose elements (";
2752 std::string sep = "";
2753 for (size_t e : match_elements) {
2754 *listener << sep << e;
2755 sep = ", ";
2756 }
2757 *listener << ") match";
2758 }
2759 }
2760 StringMatchResultListener count_listener;
2761 if (count_matcher.MatchAndExplain(x: match_elements.size(), listener: &count_listener)) {
2762 *listener << " and whose match quantity of " << match_elements.size()
2763 << " matches";
2764 PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream());
2765 return true;
2766 } else {
2767 if (match_elements.empty()) {
2768 *listener << " and";
2769 } else {
2770 *listener << " but";
2771 }
2772 *listener << " whose match quantity of " << match_elements.size()
2773 << " does not match";
2774 PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream());
2775 return false;
2776 }
2777 }
2778
2779 protected:
2780 const Matcher<const Element&> inner_matcher_;
2781};
2782
2783// Implements Contains(element_matcher) for the given argument type Container.
2784// Symmetric to EachMatcherImpl.
2785template <typename Container>
2786class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2787 public:
2788 template <typename InnerMatcher>
2789 explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2790 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2791
2792 // Describes what this matcher does.
2793 void DescribeTo(::std::ostream* os) const override {
2794 *os << "contains at least one element that ";
2795 this->inner_matcher_.DescribeTo(os);
2796 }
2797
2798 void DescribeNegationTo(::std::ostream* os) const override {
2799 *os << "doesn't contain any element that ";
2800 this->inner_matcher_.DescribeTo(os);
2801 }
2802
2803 bool MatchAndExplain(Container container,
2804 MatchResultListener* listener) const override {
2805 return this->MatchAndExplainImpl(false, container, listener);
2806 }
2807};
2808
2809// Implements Each(element_matcher) for the given argument type Container.
2810// Symmetric to ContainsMatcherImpl.
2811template <typename Container>
2812class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2813 public:
2814 template <typename InnerMatcher>
2815 explicit EachMatcherImpl(InnerMatcher inner_matcher)
2816 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2817
2818 // Describes what this matcher does.
2819 void DescribeTo(::std::ostream* os) const override {
2820 *os << "only contains elements that ";
2821 this->inner_matcher_.DescribeTo(os);
2822 }
2823
2824 void DescribeNegationTo(::std::ostream* os) const override {
2825 *os << "contains some element that ";
2826 this->inner_matcher_.DescribeNegationTo(os);
2827 }
2828
2829 bool MatchAndExplain(Container container,
2830 MatchResultListener* listener) const override {
2831 return this->MatchAndExplainImpl(true, container, listener);
2832 }
2833};
2834
2835// Implements Contains(element_matcher).Times(n) for the given argument type
2836// Container.
2837template <typename Container>
2838class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> {
2839 public:
2840 template <typename InnerMatcher>
2841 explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher,
2842 Matcher<size_t> count_matcher)
2843 : QuantifierMatcherImpl<Container>(inner_matcher),
2844 count_matcher_(std::move(count_matcher)) {}
2845
2846 void DescribeTo(::std::ostream* os) const override {
2847 *os << "quantity of elements that match ";
2848 this->inner_matcher_.DescribeTo(os);
2849 *os << " ";
2850 count_matcher_.DescribeTo(os);
2851 }
2852
2853 void DescribeNegationTo(::std::ostream* os) const override {
2854 *os << "quantity of elements that match ";
2855 this->inner_matcher_.DescribeTo(os);
2856 *os << " ";
2857 count_matcher_.DescribeNegationTo(os);
2858 }
2859
2860 bool MatchAndExplain(Container container,
2861 MatchResultListener* listener) const override {
2862 return this->MatchAndExplainImpl(count_matcher_, container, listener);
2863 }
2864
2865 private:
2866 const Matcher<size_t> count_matcher_;
2867};
2868
2869// Implements polymorphic Contains(element_matcher).Times(n).
2870template <typename M>
2871class ContainsTimesMatcher {
2872 public:
2873 explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher)
2874 : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {}
2875
2876 template <typename Container>
2877 operator Matcher<Container>() const { // NOLINT
2878 return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>(
2879 inner_matcher_, count_matcher_));
2880 }
2881
2882 private:
2883 const M inner_matcher_;
2884 const Matcher<size_t> count_matcher_;
2885};
2886
2887// Implements polymorphic Contains(element_matcher).
2888template <typename M>
2889class ContainsMatcher {
2890 public:
2891 explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2892
2893 template <typename Container>
2894 operator Matcher<Container>() const { // NOLINT
2895 return Matcher<Container>(
2896 new ContainsMatcherImpl<const Container&>(inner_matcher_));
2897 }
2898
2899 ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const {
2900 return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher));
2901 }
2902
2903 private:
2904 const M inner_matcher_;
2905};
2906
2907// Implements polymorphic Each(element_matcher).
2908template <typename M>
2909class EachMatcher {
2910 public:
2911 explicit EachMatcher(M m) : inner_matcher_(m) {}
2912
2913 template <typename Container>
2914 operator Matcher<Container>() const { // NOLINT
2915 return Matcher<Container>(
2916 new EachMatcherImpl<const Container&>(inner_matcher_));
2917 }
2918
2919 private:
2920 const M inner_matcher_;
2921};
2922
2923struct Rank1 {};
2924struct Rank0 : Rank1 {};
2925
2926namespace pair_getters {
2927using std::get;
2928template <typename T>
2929auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
2930 return get<0>(x);
2931}
2932template <typename T>
2933auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
2934 return x.first;
2935}
2936
2937template <typename T>
2938auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
2939 return get<1>(x);
2940}
2941template <typename T>
2942auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
2943 return x.second;
2944}
2945} // namespace pair_getters
2946
2947// Implements Key(inner_matcher) for the given argument pair type.
2948// Key(inner_matcher) matches an std::pair whose 'first' field matches
2949// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
2950// std::map that contains at least one element whose key is >= 5.
2951template <typename PairType>
2952class KeyMatcherImpl : public MatcherInterface<PairType> {
2953 public:
2954 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2955 typedef typename RawPairType::first_type KeyType;
2956
2957 template <typename InnerMatcher>
2958 explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2959 : inner_matcher_(
2960 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {}
2961
2962 // Returns true if and only if 'key_value.first' (the key) matches the inner
2963 // matcher.
2964 bool MatchAndExplain(PairType key_value,
2965 MatchResultListener* listener) const override {
2966 StringMatchResultListener inner_listener;
2967 const bool match = inner_matcher_.MatchAndExplain(
2968 pair_getters::First(key_value, Rank0()), &inner_listener);
2969 const std::string explanation = inner_listener.str();
2970 if (!explanation.empty()) {
2971 *listener << "whose first field is a value " << explanation;
2972 }
2973 return match;
2974 }
2975
2976 // Describes what this matcher does.
2977 void DescribeTo(::std::ostream* os) const override {
2978 *os << "has a key that ";
2979 inner_matcher_.DescribeTo(os);
2980 }
2981
2982 // Describes what the negation of this matcher does.
2983 void DescribeNegationTo(::std::ostream* os) const override {
2984 *os << "doesn't have a key that ";
2985 inner_matcher_.DescribeTo(os);
2986 }
2987
2988 private:
2989 const Matcher<const KeyType&> inner_matcher_;
2990};
2991
2992// Implements polymorphic Key(matcher_for_key).
2993template <typename M>
2994class KeyMatcher {
2995 public:
2996 explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2997
2998 template <typename PairType>
2999 operator Matcher<PairType>() const {
3000 return Matcher<PairType>(
3001 new KeyMatcherImpl<const PairType&>(matcher_for_key_));
3002 }
3003
3004 private:
3005 const M matcher_for_key_;
3006};
3007
3008// Implements polymorphic Address(matcher_for_address).
3009template <typename InnerMatcher>
3010class AddressMatcher {
3011 public:
3012 explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
3013
3014 template <typename Type>
3015 operator Matcher<Type>() const { // NOLINT
3016 return Matcher<Type>(new Impl<const Type&>(matcher_));
3017 }
3018
3019 private:
3020 // The monomorphic implementation that works for a particular object type.
3021 template <typename Type>
3022 class Impl : public MatcherInterface<Type> {
3023 public:
3024 using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
3025 explicit Impl(const InnerMatcher& matcher)
3026 : matcher_(MatcherCast<Address>(matcher)) {}
3027
3028 void DescribeTo(::std::ostream* os) const override {
3029 *os << "has address that ";
3030 matcher_.DescribeTo(os);
3031 }
3032
3033 void DescribeNegationTo(::std::ostream* os) const override {
3034 *os << "does not have address that ";
3035 matcher_.DescribeTo(os);
3036 }
3037
3038 bool MatchAndExplain(Type object,
3039 MatchResultListener* listener) const override {
3040 *listener << "which has address ";
3041 Address address = std::addressof(object);
3042 return MatchPrintAndExplain(address, matcher_, listener);
3043 }
3044
3045 private:
3046 const Matcher<Address> matcher_;
3047 };
3048 const InnerMatcher matcher_;
3049};
3050
3051// Implements Pair(first_matcher, second_matcher) for the given argument pair
3052// type with its two matchers. See Pair() function below.
3053template <typename PairType>
3054class PairMatcherImpl : public MatcherInterface<PairType> {
3055 public:
3056 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3057 typedef typename RawPairType::first_type FirstType;
3058 typedef typename RawPairType::second_type SecondType;
3059
3060 template <typename FirstMatcher, typename SecondMatcher>
3061 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3062 : first_matcher_(
3063 testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3064 second_matcher_(
3065 testing::SafeMatcherCast<const SecondType&>(second_matcher)) {}
3066
3067 // Describes what this matcher does.
3068 void DescribeTo(::std::ostream* os) const override {
3069 *os << "has a first field that ";
3070 first_matcher_.DescribeTo(os);
3071 *os << ", and has a second field that ";
3072 second_matcher_.DescribeTo(os);
3073 }
3074
3075 // Describes what the negation of this matcher does.
3076 void DescribeNegationTo(::std::ostream* os) const override {
3077 *os << "has a first field that ";
3078 first_matcher_.DescribeNegationTo(os);
3079 *os << ", or has a second field that ";
3080 second_matcher_.DescribeNegationTo(os);
3081 }
3082
3083 // Returns true if and only if 'a_pair.first' matches first_matcher and
3084 // 'a_pair.second' matches second_matcher.
3085 bool MatchAndExplain(PairType a_pair,
3086 MatchResultListener* listener) const override {
3087 if (!listener->IsInterested()) {
3088 // If the listener is not interested, we don't need to construct the
3089 // explanation.
3090 return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
3091 second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
3092 }
3093 StringMatchResultListener first_inner_listener;
3094 if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
3095 &first_inner_listener)) {
3096 *listener << "whose first field does not match";
3097 PrintIfNotEmpty(explanation: first_inner_listener.str(), os: listener->stream());
3098 return false;
3099 }
3100 StringMatchResultListener second_inner_listener;
3101 if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
3102 &second_inner_listener)) {
3103 *listener << "whose second field does not match";
3104 PrintIfNotEmpty(explanation: second_inner_listener.str(), os: listener->stream());
3105 return false;
3106 }
3107 ExplainSuccess(first_explanation: first_inner_listener.str(), second_explanation: second_inner_listener.str(),
3108 listener);
3109 return true;
3110 }
3111
3112 private:
3113 void ExplainSuccess(const std::string& first_explanation,
3114 const std::string& second_explanation,
3115 MatchResultListener* listener) const {
3116 *listener << "whose both fields match";
3117 if (!first_explanation.empty()) {
3118 *listener << ", where the first field is a value " << first_explanation;
3119 }
3120 if (!second_explanation.empty()) {
3121 *listener << ", ";
3122 if (!first_explanation.empty()) {
3123 *listener << "and ";
3124 } else {
3125 *listener << "where ";
3126 }
3127 *listener << "the second field is a value " << second_explanation;
3128 }
3129 }
3130
3131 const Matcher<const FirstType&> first_matcher_;
3132 const Matcher<const SecondType&> second_matcher_;
3133};
3134
3135// Implements polymorphic Pair(first_matcher, second_matcher).
3136template <typename FirstMatcher, typename SecondMatcher>
3137class PairMatcher {
3138 public:
3139 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3140 : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3141
3142 template <typename PairType>
3143 operator Matcher<PairType>() const {
3144 return Matcher<PairType>(
3145 new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
3146 }
3147
3148 private:
3149 const FirstMatcher first_matcher_;
3150 const SecondMatcher second_matcher_;
3151};
3152
3153template <typename T, size_t... I>
3154auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
3155 -> decltype(std::tie(get<I>(t)...)) {
3156 static_assert(std::tuple_size<T>::value == sizeof...(I),
3157 "Number of arguments doesn't match the number of fields.");
3158 return std::tie(get<I>(t)...);
3159}
3160
3161#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
3162template <typename T>
3163auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
3164 const auto& [a] = t;
3165 return std::tie(a);
3166}
3167template <typename T>
3168auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
3169 const auto& [a, b] = t;
3170 return std::tie(a, b);
3171}
3172template <typename T>
3173auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
3174 const auto& [a, b, c] = t;
3175 return std::tie(a, b, c);
3176}
3177template <typename T>
3178auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
3179 const auto& [a, b, c, d] = t;
3180 return std::tie(a, b, c, d);
3181}
3182template <typename T>
3183auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
3184 const auto& [a, b, c, d, e] = t;
3185 return std::tie(a, b, c, d, e);
3186}
3187template <typename T>
3188auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
3189 const auto& [a, b, c, d, e, f] = t;
3190 return std::tie(a, b, c, d, e, f);
3191}
3192template <typename T>
3193auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
3194 const auto& [a, b, c, d, e, f, g] = t;
3195 return std::tie(a, b, c, d, e, f, g);
3196}
3197template <typename T>
3198auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
3199 const auto& [a, b, c, d, e, f, g, h] = t;
3200 return std::tie(a, b, c, d, e, f, g, h);
3201}
3202template <typename T>
3203auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
3204 const auto& [a, b, c, d, e, f, g, h, i] = t;
3205 return std::tie(a, b, c, d, e, f, g, h, i);
3206}
3207template <typename T>
3208auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
3209 const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3210 return std::tie(a, b, c, d, e, f, g, h, i, j);
3211}
3212template <typename T>
3213auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
3214 const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3215 return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3216}
3217template <typename T>
3218auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
3219 const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3220 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3221}
3222template <typename T>
3223auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
3224 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3225 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3226}
3227template <typename T>
3228auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
3229 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3230 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3231}
3232template <typename T>
3233auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
3234 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3235 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3236}
3237template <typename T>
3238auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
3239 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3240 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3241}
3242template <typename T>
3243auto UnpackStructImpl(const T& t, MakeIndexSequence<17>, char) {
3244 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t;
3245 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q);
3246}
3247template <typename T>
3248auto UnpackStructImpl(const T& t, MakeIndexSequence<18>, char) {
3249 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t;
3250 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r);
3251}
3252template <typename T>
3253auto UnpackStructImpl(const T& t, MakeIndexSequence<19>, char) {
3254 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t;
3255 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s);
3256}
3257#endif // defined(__cpp_structured_bindings)
3258
3259template <size_t I, typename T>
3260auto UnpackStruct(const T& t)
3261 -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
3262 return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
3263}
3264
3265// Helper function to do comma folding in C++11.
3266// The array ensures left-to-right order of evaluation.
3267// Usage: VariadicExpand({expr...});
3268template <typename T, size_t N>
3269void VariadicExpand(const T (&)[N]) {}
3270
3271template <typename Struct, typename StructSize>
3272class FieldsAreMatcherImpl;
3273
3274template <typename Struct, size_t... I>
3275class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
3276 : public MatcherInterface<Struct> {
3277 using UnpackedType =
3278 decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3279 using MatchersType = std::tuple<
3280 Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3281
3282 public:
3283 template <typename Inner>
3284 explicit FieldsAreMatcherImpl(const Inner& matchers)
3285 : matchers_(testing::SafeMatcherCast<
3286 const typename std::tuple_element<I, UnpackedType>::type&>(
3287 std::get<I>(matchers))...) {}
3288
3289 void DescribeTo(::std::ostream* os) const override {
3290 const char* separator = "";
3291 VariadicExpand(
3292 {(*os << separator << "has field #" << I << " that ",
3293 std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3294 }
3295
3296 void DescribeNegationTo(::std::ostream* os) const override {
3297 const char* separator = "";
3298 VariadicExpand({(*os << separator << "has field #" << I << " that ",
3299 std::get<I>(matchers_).DescribeNegationTo(os),
3300 separator = ", or ")...});
3301 }
3302
3303 bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3304 return MatchInternal(tuple: (UnpackStruct<sizeof...(I)>)(t), listener);
3305 }
3306
3307 private:
3308 bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3309 if (!listener->IsInterested()) {
3310 // If the listener is not interested, we don't need to construct the
3311 // explanation.
3312 bool good = true;
3313 VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3314 std::get<I>(tuple))...});
3315 return good;
3316 }
3317
3318 size_t failed_pos = ~size_t{};
3319
3320 std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3321
3322 VariadicExpand(
3323 {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
3324 std::get<I>(tuple), &inner_listener[I])
3325 ? failed_pos = I
3326 : 0 ...});
3327 if (failed_pos != ~size_t{}) {
3328 *listener << "whose field #" << failed_pos << " does not match";
3329 PrintIfNotEmpty(explanation: inner_listener[failed_pos].str(), os: listener->stream());
3330 return false;
3331 }
3332
3333 *listener << "whose all elements match";
3334 const char* separator = ", where";
3335 for (size_t index = 0; index < sizeof...(I); ++index) {
3336 const std::string str = inner_listener[index].str();
3337 if (!str.empty()) {
3338 *listener << separator << " field #" << index << " is a value " << str;
3339 separator = ", and";
3340 }
3341 }
3342
3343 return true;
3344 }
3345
3346 MatchersType matchers_;
3347};
3348
3349template <typename... Inner>
3350class FieldsAreMatcher {
3351 public:
3352 explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3353
3354 template <typename Struct>
3355 operator Matcher<Struct>() const { // NOLINT
3356 return Matcher<Struct>(
3357 new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
3358 matchers_));
3359 }
3360
3361 private:
3362 std::tuple<Inner...> matchers_;
3363};
3364
3365// Implements ElementsAre() and ElementsAreArray().
3366template <typename Container>
3367class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3368 public:
3369 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3370 typedef internal::StlContainerView<RawContainer> View;
3371 typedef typename View::type StlContainer;
3372 typedef typename View::const_reference StlContainerReference;
3373 typedef typename StlContainer::value_type Element;
3374
3375 // Constructs the matcher from a sequence of element values or
3376 // element matchers.
3377 template <typename InputIter>
3378 ElementsAreMatcherImpl(InputIter first, InputIter last) {
3379 while (first != last) {
3380 matchers_.push_back(MatcherCast<const Element&>(*first++));
3381 }
3382 }
3383
3384 // Describes what this matcher does.
3385 void DescribeTo(::std::ostream* os) const override {
3386 if (count() == 0) {
3387 *os << "is empty";
3388 } else if (count() == 1) {
3389 *os << "has 1 element that ";
3390 matchers_[0].DescribeTo(os);
3391 } else {
3392 *os << "has " << Elements(count: count()) << " where\n";
3393 for (size_t i = 0; i != count(); ++i) {
3394 *os << "element #" << i << " ";
3395 matchers_[i].DescribeTo(os);
3396 if (i + 1 < count()) {
3397 *os << ",\n";
3398 }
3399 }
3400 }
3401 }
3402
3403 // Describes what the negation of this matcher does.
3404 void DescribeNegationTo(::std::ostream* os) const override {
3405 if (count() == 0) {
3406 *os << "isn't empty";
3407 return;
3408 }
3409
3410 *os << "doesn't have " << Elements(count: count()) << ", or\n";
3411 for (size_t i = 0; i != count(); ++i) {
3412 *os << "element #" << i << " ";
3413 matchers_[i].DescribeNegationTo(os);
3414 if (i + 1 < count()) {
3415 *os << ", or\n";
3416 }
3417 }
3418 }
3419
3420 bool MatchAndExplain(Container container,
3421 MatchResultListener* listener) const override {
3422 // To work with stream-like "containers", we must only walk
3423 // through the elements in one pass.
3424
3425 const bool listener_interested = listener->IsInterested();
3426
3427 // explanations[i] is the explanation of the element at index i.
3428 ::std::vector<std::string> explanations(count());
3429 StlContainerReference stl_container = View::ConstReference(container);
3430 auto it = stl_container.begin();
3431 size_t exam_pos = 0;
3432 bool mismatch_found = false; // Have we found a mismatched element yet?
3433
3434 // Go through the elements and matchers in pairs, until we reach
3435 // the end of either the elements or the matchers, or until we find a
3436 // mismatch.
3437 for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3438 bool match; // Does the current element match the current matcher?
3439 if (listener_interested) {
3440 StringMatchResultListener s;
3441 match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3442 explanations[exam_pos] = s.str();
3443 } else {
3444 match = matchers_[exam_pos].Matches(*it);
3445 }
3446
3447 if (!match) {
3448 mismatch_found = true;
3449 break;
3450 }
3451 }
3452 // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3453
3454 // Find how many elements the actual container has. We avoid
3455 // calling size() s.t. this code works for stream-like "containers"
3456 // that don't define size().
3457 size_t actual_count = exam_pos;
3458 for (; it != stl_container.end(); ++it) {
3459 ++actual_count;
3460 }
3461
3462 if (actual_count != count()) {
3463 // The element count doesn't match. If the container is empty,
3464 // there's no need to explain anything as Google Mock already
3465 // prints the empty container. Otherwise we just need to show
3466 // how many elements there actually are.
3467 if (listener_interested && (actual_count != 0)) {
3468 *listener << "which has " << Elements(count: actual_count);
3469 }
3470 return false;
3471 }
3472
3473 if (mismatch_found) {
3474 // The element count matches, but the exam_pos-th element doesn't match.
3475 if (listener_interested) {
3476 *listener << "whose element #" << exam_pos << " doesn't match";
3477 PrintIfNotEmpty(explanation: explanations[exam_pos], os: listener->stream());
3478 }
3479 return false;
3480 }
3481
3482 // Every element matches its expectation. We need to explain why
3483 // (the obvious ones can be skipped).
3484 if (listener_interested) {
3485 bool reason_printed = false;
3486 for (size_t i = 0; i != count(); ++i) {
3487 const std::string& s = explanations[i];
3488 if (!s.empty()) {
3489 if (reason_printed) {
3490 *listener << ",\nand ";
3491 }
3492 *listener << "whose element #" << i << " matches, " << s;
3493 reason_printed = true;
3494 }
3495 }
3496 }
3497 return true;
3498 }
3499
3500 private:
3501 static Message Elements(size_t count) {
3502 return Message() << count << (count == 1 ? " element" : " elements");
3503 }
3504
3505 size_t count() const { return matchers_.size(); }
3506
3507 ::std::vector<Matcher<const Element&>> matchers_;
3508};
3509
3510// Connectivity matrix of (elements X matchers), in element-major order.
3511// Initially, there are no edges.
3512// Use NextGraph() to iterate over all possible edge configurations.
3513// Use Randomize() to generate a random edge configuration.
3514class GTEST_API_ MatchMatrix {
3515 public:
3516 MatchMatrix(size_t num_elements, size_t num_matchers)
3517 : num_elements_(num_elements),
3518 num_matchers_(num_matchers),
3519 matched_(num_elements_ * num_matchers_, 0) {}
3520
3521 size_t LhsSize() const { return num_elements_; }
3522 size_t RhsSize() const { return num_matchers_; }
3523 bool HasEdge(size_t ilhs, size_t irhs) const {
3524 return matched_[SpaceIndex(ilhs, irhs)] == 1;
3525 }
3526 void SetEdge(size_t ilhs, size_t irhs, bool b) {
3527 matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3528 }
3529
3530 // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3531 // adds 1 to that number; returns false if incrementing the graph left it
3532 // empty.
3533 bool NextGraph();
3534
3535 void Randomize();
3536
3537 std::string DebugString() const;
3538
3539 private:
3540 size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3541 return ilhs * num_matchers_ + irhs;
3542 }
3543
3544 size_t num_elements_;
3545 size_t num_matchers_;
3546
3547 // Each element is a char interpreted as bool. They are stored as a
3548 // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3549 // a (ilhs, irhs) matrix coordinate into an offset.
3550 ::std::vector<char> matched_;
3551};
3552
3553typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3554typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3555
3556// Returns a maximum bipartite matching for the specified graph 'g'.
3557// The matching is represented as a vector of {element, matcher} pairs.
3558GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
3559
3560struct UnorderedMatcherRequire {
3561 enum Flags {
3562 Superset = 1 << 0,
3563 Subset = 1 << 1,
3564 ExactMatch = Superset | Subset,
3565 };
3566};
3567
3568// Untyped base class for implementing UnorderedElementsAre. By
3569// putting logic that's not specific to the element type here, we
3570// reduce binary bloat and increase compilation speed.
3571class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3572 protected:
3573 explicit UnorderedElementsAreMatcherImplBase(
3574 UnorderedMatcherRequire::Flags matcher_flags)
3575 : match_flags_(matcher_flags) {}
3576
3577 // A vector of matcher describers, one for each element matcher.
3578 // Does not own the describers (and thus can be used only when the
3579 // element matchers are alive).
3580 typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3581
3582 // Describes this UnorderedElementsAre matcher.
3583 void DescribeToImpl(::std::ostream* os) const;
3584
3585 // Describes the negation of this UnorderedElementsAre matcher.
3586 void DescribeNegationToImpl(::std::ostream* os) const;
3587
3588 bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3589 const MatchMatrix& matrix,
3590 MatchResultListener* listener) const;
3591
3592 bool FindPairing(const MatchMatrix& matrix,
3593 MatchResultListener* listener) const;
3594
3595 MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
3596
3597 static Message Elements(size_t n) {
3598 return Message() << n << " element" << (n == 1 ? "" : "s");
3599 }
3600
3601 UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3602
3603 private:
3604 UnorderedMatcherRequire::Flags match_flags_;
3605 MatcherDescriberVec matcher_describers_;
3606};
3607
3608// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3609// IsSupersetOf.
3610template <typename Container>
3611class UnorderedElementsAreMatcherImpl
3612 : public MatcherInterface<Container>,
3613 public UnorderedElementsAreMatcherImplBase {
3614 public:
3615 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3616 typedef internal::StlContainerView<RawContainer> View;
3617 typedef typename View::type StlContainer;
3618 typedef typename View::const_reference StlContainerReference;
3619 typedef typename StlContainer::value_type Element;
3620
3621 template <typename InputIter>
3622 UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3623 InputIter first, InputIter last)
3624 : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3625 for (; first != last; ++first) {
3626 matchers_.push_back(MatcherCast<const Element&>(*first));
3627 }
3628 for (const auto& m : matchers_) {
3629 matcher_describers().push_back(m.GetDescriber());
3630 }
3631 }
3632
3633 // Describes what this matcher does.
3634 void DescribeTo(::std::ostream* os) const override {
3635 return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3636 }
3637
3638 // Describes what the negation of this matcher does.
3639 void DescribeNegationTo(::std::ostream* os) const override {
3640 return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3641 }
3642
3643 bool MatchAndExplain(Container container,
3644 MatchResultListener* listener) const override {
3645 StlContainerReference stl_container = View::ConstReference(container);
3646 ::std::vector<std::string> element_printouts;
3647 MatchMatrix matrix =
3648 AnalyzeElements(stl_container.begin(), stl_container.end(),
3649 &element_printouts, listener);
3650
3651 return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3652 FindPairing(matrix, listener);
3653 }
3654
3655 private:
3656 template <typename ElementIter>
3657 MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3658 ::std::vector<std::string>* element_printouts,
3659 MatchResultListener* listener) const {
3660 element_printouts->clear();
3661 ::std::vector<char> did_match;
3662 size_t num_elements = 0;
3663 DummyMatchResultListener dummy;
3664 for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3665 if (listener->IsInterested()) {
3666 element_printouts->push_back(PrintToString(*elem_first));
3667 }
3668 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3669 did_match.push_back(
3670 matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3671 }
3672 }
3673
3674 MatchMatrix matrix(num_elements, matchers_.size());
3675 ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3676 for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3677 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3678 matrix.SetEdge(ilhs, irhs, b: *did_match_iter++ != 0);
3679 }
3680 }
3681 return matrix;
3682 }
3683
3684 ::std::vector<Matcher<const Element&>> matchers_;
3685};
3686
3687// Functor for use in TransformTuple.
3688// Performs MatcherCast<Target> on an input argument of any type.
3689template <typename Target>
3690struct CastAndAppendTransform {
3691 template <typename Arg>
3692 Matcher<Target> operator()(const Arg& a) const {
3693 return MatcherCast<Target>(a);
3694 }
3695};
3696
3697// Implements UnorderedElementsAre.
3698template <typename MatcherTuple>
3699class UnorderedElementsAreMatcher {
3700 public:
3701 explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3702 : matchers_(args) {}
3703
3704 template <typename Container>
3705 operator Matcher<Container>() const {
3706 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3707 typedef typename internal::StlContainerView<RawContainer>::type View;
3708 typedef typename View::value_type Element;
3709 typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3710 MatcherVec matchers;
3711 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3712 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3713 ::std::back_inserter(matchers));
3714 return Matcher<Container>(
3715 new UnorderedElementsAreMatcherImpl<const Container&>(
3716 UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3717 matchers.end()));
3718 }
3719
3720 private:
3721 const MatcherTuple matchers_;
3722};
3723
3724// Implements ElementsAre.
3725template <typename MatcherTuple>
3726class ElementsAreMatcher {
3727 public:
3728 explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3729
3730 template <typename Container>
3731 operator Matcher<Container>() const {
3732 static_assert(
3733 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3734 ::std::tuple_size<MatcherTuple>::value < 2,
3735 "use UnorderedElementsAre with hash tables");
3736
3737 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3738 typedef typename internal::StlContainerView<RawContainer>::type View;
3739 typedef typename View::value_type Element;
3740 typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3741 MatcherVec matchers;
3742 matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3743 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3744 ::std::back_inserter(matchers));
3745 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3746 matchers.begin(), matchers.end()));
3747 }
3748
3749 private:
3750 const MatcherTuple matchers_;
3751};
3752
3753// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3754template <typename T>
3755class UnorderedElementsAreArrayMatcher {
3756 public:
3757 template <typename Iter>
3758 UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3759 Iter first, Iter last)
3760 : match_flags_(match_flags), matchers_(first, last) {}
3761
3762 template <typename Container>
3763 operator Matcher<Container>() const {
3764 return Matcher<Container>(
3765 new UnorderedElementsAreMatcherImpl<const Container&>(
3766 match_flags_, matchers_.begin(), matchers_.end()));
3767 }
3768
3769 private:
3770 UnorderedMatcherRequire::Flags match_flags_;
3771 ::std::vector<T> matchers_;
3772};
3773
3774// Implements ElementsAreArray().
3775template <typename T>
3776class ElementsAreArrayMatcher {
3777 public:
3778 template <typename Iter>
3779 ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3780
3781 template <typename Container>
3782 operator Matcher<Container>() const {
3783 static_assert(
3784 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3785 "use UnorderedElementsAreArray with hash tables");
3786
3787 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3788 matchers_.begin(), matchers_.end()));
3789 }
3790
3791 private:
3792 const ::std::vector<T> matchers_;
3793};
3794
3795// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3796// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3797// second) is a polymorphic matcher that matches a value x if and only if
3798// tm matches tuple (x, second). Useful for implementing
3799// UnorderedPointwise() in terms of UnorderedElementsAreArray().
3800//
3801// BoundSecondMatcher is copyable and assignable, as we need to put
3802// instances of this class in a vector when implementing
3803// UnorderedPointwise().
3804template <typename Tuple2Matcher, typename Second>
3805class BoundSecondMatcher {
3806 public:
3807 BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3808 : tuple2_matcher_(tm), second_value_(second) {}
3809
3810 BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3811
3812 template <typename T>
3813 operator Matcher<T>() const {
3814 return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3815 }
3816
3817 // We have to define this for UnorderedPointwise() to compile in
3818 // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3819 // which requires the elements to be assignable in C++98. The
3820 // compiler cannot generate the operator= for us, as Tuple2Matcher
3821 // and Second may not be assignable.
3822 //
3823 // However, this should never be called, so the implementation just
3824 // need to assert.
3825 void operator=(const BoundSecondMatcher& /*rhs*/) {
3826 GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3827 }
3828
3829 private:
3830 template <typename T>
3831 class Impl : public MatcherInterface<T> {
3832 public:
3833 typedef ::std::tuple<T, Second> ArgTuple;
3834
3835 Impl(const Tuple2Matcher& tm, const Second& second)
3836 : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3837 second_value_(second) {}
3838
3839 void DescribeTo(::std::ostream* os) const override {
3840 *os << "and ";
3841 UniversalPrint(second_value_, os);
3842 *os << " ";
3843 mono_tuple2_matcher_.DescribeTo(os);
3844 }
3845
3846 bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3847 return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3848 listener);
3849 }
3850
3851 private:
3852 const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3853 const Second second_value_;
3854 };
3855
3856 const Tuple2Matcher tuple2_matcher_;
3857 const Second second_value_;
3858};
3859
3860// Given a 2-tuple matcher tm and a value second,
3861// MatcherBindSecond(tm, second) returns a matcher that matches a
3862// value x if and only if tm matches tuple (x, second). Useful for
3863// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3864template <typename Tuple2Matcher, typename Second>
3865BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3866 const Tuple2Matcher& tm, const Second& second) {
3867 return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3868}
3869
3870// Returns the description for a matcher defined using the MATCHER*()
3871// macro where the user-supplied description string is "", if
3872// 'negation' is false; otherwise returns the description of the
3873// negation of the matcher. 'param_values' contains a list of strings
3874// that are the print-out of the matcher's parameters.
3875GTEST_API_ std::string FormatMatcherDescription(
3876 bool negation, const char* matcher_name,
3877 const std::vector<const char*>& param_names, const Strings& param_values);
3878
3879// Implements a matcher that checks the value of a optional<> type variable.
3880template <typename ValueMatcher>
3881class OptionalMatcher {
3882 public:
3883 explicit OptionalMatcher(const ValueMatcher& value_matcher)
3884 : value_matcher_(value_matcher) {}
3885
3886 template <typename Optional>
3887 operator Matcher<Optional>() const {
3888 return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3889 }
3890
3891 template <typename Optional>
3892 class Impl : public MatcherInterface<Optional> {
3893 public:
3894 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3895 typedef typename OptionalView::value_type ValueType;
3896 explicit Impl(const ValueMatcher& value_matcher)
3897 : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3898
3899 void DescribeTo(::std::ostream* os) const override {
3900 *os << "value ";
3901 value_matcher_.DescribeTo(os);
3902 }
3903
3904 void DescribeNegationTo(::std::ostream* os) const override {
3905 *os << "value ";
3906 value_matcher_.DescribeNegationTo(os);
3907 }
3908
3909 bool MatchAndExplain(Optional optional,
3910 MatchResultListener* listener) const override {
3911 if (!optional) {
3912 *listener << "which is not engaged";
3913 return false;
3914 }
3915 const ValueType& value = *optional;
3916 StringMatchResultListener value_listener;
3917 const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3918 *listener << "whose value " << PrintToString(value)
3919 << (match ? " matches" : " doesn't match");
3920 PrintIfNotEmpty(explanation: value_listener.str(), os: listener->stream());
3921 return match;
3922 }
3923
3924 private:
3925 const Matcher<ValueType> value_matcher_;
3926 };
3927
3928 private:
3929 const ValueMatcher value_matcher_;
3930};
3931
3932namespace variant_matcher {
3933// Overloads to allow VariantMatcher to do proper ADL lookup.
3934template <typename T>
3935void holds_alternative() {}
3936template <typename T>
3937void get() {}
3938
3939// Implements a matcher that checks the value of a variant<> type variable.
3940template <typename T>
3941class VariantMatcher {
3942 public:
3943 explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3944 : matcher_(std::move(matcher)) {}
3945
3946 template <typename Variant>
3947 bool MatchAndExplain(const Variant& value,
3948 ::testing::MatchResultListener* listener) const {
3949 using std::get;
3950 if (!listener->IsInterested()) {
3951 return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3952 }
3953
3954 if (!holds_alternative<T>(value)) {
3955 *listener << "whose value is not of type '" << GetTypeName() << "'";
3956 return false;
3957 }
3958
3959 const T& elem = get<T>(value);
3960 StringMatchResultListener elem_listener;
3961 const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3962 *listener << "whose value " << PrintToString(elem)
3963 << (match ? " matches" : " doesn't match");
3964 PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream());
3965 return match;
3966 }
3967
3968 void DescribeTo(std::ostream* os) const {
3969 *os << "is a variant<> with value of type '" << GetTypeName()
3970 << "' and the value ";
3971 matcher_.DescribeTo(os);
3972 }
3973
3974 void DescribeNegationTo(std::ostream* os) const {
3975 *os << "is a variant<> with value of type other than '" << GetTypeName()
3976 << "' or the value ";
3977 matcher_.DescribeNegationTo(os);
3978 }
3979
3980 private:
3981 static std::string GetTypeName() {
3982#if GTEST_HAS_RTTI
3983 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3984 return internal::GetTypeName<T>());
3985#endif
3986 return "the element type";
3987 }
3988
3989 const ::testing::Matcher<const T&> matcher_;
3990};
3991
3992} // namespace variant_matcher
3993
3994namespace any_cast_matcher {
3995
3996// Overloads to allow AnyCastMatcher to do proper ADL lookup.
3997template <typename T>
3998void any_cast() {}
3999
4000// Implements a matcher that any_casts the value.
4001template <typename T>
4002class AnyCastMatcher {
4003 public:
4004 explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
4005 : matcher_(matcher) {}
4006
4007 template <typename AnyType>
4008 bool MatchAndExplain(const AnyType& value,
4009 ::testing::MatchResultListener* listener) const {
4010 if (!listener->IsInterested()) {
4011 const T* ptr = any_cast<T>(&value);
4012 return ptr != nullptr && matcher_.Matches(*ptr);
4013 }
4014
4015 const T* elem = any_cast<T>(&value);
4016 if (elem == nullptr) {
4017 *listener << "whose value is not of type '" << GetTypeName() << "'";
4018 return false;
4019 }
4020
4021 StringMatchResultListener elem_listener;
4022 const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4023 *listener << "whose value " << PrintToString(*elem)
4024 << (match ? " matches" : " doesn't match");
4025 PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream());
4026 return match;
4027 }
4028
4029 void DescribeTo(std::ostream* os) const {
4030 *os << "is an 'any' type with value of type '" << GetTypeName()
4031 << "' and the value ";
4032 matcher_.DescribeTo(os);
4033 }
4034
4035 void DescribeNegationTo(std::ostream* os) const {
4036 *os << "is an 'any' type with value of type other than '" << GetTypeName()
4037 << "' or the value ";
4038 matcher_.DescribeNegationTo(os);
4039 }
4040
4041 private:
4042 static std::string GetTypeName() {
4043#if GTEST_HAS_RTTI
4044 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4045 return internal::GetTypeName<T>());
4046#endif
4047 return "the element type";
4048 }
4049
4050 const ::testing::Matcher<const T&> matcher_;
4051};
4052
4053} // namespace any_cast_matcher
4054
4055// Implements the Args() matcher.
4056template <class ArgsTuple, size_t... k>
4057class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
4058 public:
4059 using RawArgsTuple = typename std::decay<ArgsTuple>::type;
4060 using SelectedArgs =
4061 std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
4062 using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
4063
4064 template <typename InnerMatcher>
4065 explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
4066 : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
4067
4068 bool MatchAndExplain(ArgsTuple args,
4069 MatchResultListener* listener) const override {
4070 // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
4071 (void)args;
4072 const SelectedArgs& selected_args =
4073 std::forward_as_tuple(std::get<k>(args)...);
4074 if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
4075
4076 PrintIndices(os: listener->stream());
4077 *listener << "are " << PrintToString(selected_args);
4078
4079 StringMatchResultListener inner_listener;
4080 const bool match =
4081 inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
4082 PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream());
4083 return match;
4084 }
4085
4086 void DescribeTo(::std::ostream* os) const override {
4087 *os << "are a tuple ";
4088 PrintIndices(os);
4089 inner_matcher_.DescribeTo(os);
4090 }
4091
4092 void DescribeNegationTo(::std::ostream* os) const override {
4093 *os << "are a tuple ";
4094 PrintIndices(os);
4095 inner_matcher_.DescribeNegationTo(os);
4096 }
4097
4098 private:
4099 // Prints the indices of the selected fields.
4100 static void PrintIndices(::std::ostream* os) {
4101 *os << "whose fields (";
4102 const char* sep = "";
4103 // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
4104 (void)sep;
4105 // The static_cast to void is needed to silence Clang's -Wcomma warning.
4106 // This pattern looks suspiciously like we may have mismatched parentheses
4107 // and may have been trying to use the first operation of the comma operator
4108 // as a member of the array, so Clang warns that we may have made a mistake.
4109 const char* dummy[] = {
4110 "", (static_cast<void>(*os << sep << "#" << k), sep = ", ")...};
4111 (void)dummy;
4112 *os << ") ";
4113 }
4114
4115 MonomorphicInnerMatcher inner_matcher_;
4116};
4117
4118template <class InnerMatcher, size_t... k>
4119class ArgsMatcher {
4120 public:
4121 explicit ArgsMatcher(InnerMatcher inner_matcher)
4122 : inner_matcher_(std::move(inner_matcher)) {}
4123
4124 template <typename ArgsTuple>
4125 operator Matcher<ArgsTuple>() const { // NOLINT
4126 return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
4127 }
4128
4129 private:
4130 InnerMatcher inner_matcher_;
4131};
4132
4133} // namespace internal
4134
4135// ElementsAreArray(iterator_first, iterator_last)
4136// ElementsAreArray(pointer, count)
4137// ElementsAreArray(array)
4138// ElementsAreArray(container)
4139// ElementsAreArray({ e1, e2, ..., en })
4140//
4141// The ElementsAreArray() functions are like ElementsAre(...), except
4142// that they are given a homogeneous sequence rather than taking each
4143// element as a function argument. The sequence can be specified as an
4144// array, a pointer and count, a vector, an initializer list, or an
4145// STL iterator range. In each of these cases, the underlying sequence
4146// can be either a sequence of values or a sequence of matchers.
4147//
4148// All forms of ElementsAreArray() make a copy of the input matcher sequence.
4149
4150template <typename Iter>
4151inline internal::ElementsAreArrayMatcher<
4152 typename ::std::iterator_traits<Iter>::value_type>
4153ElementsAreArray(Iter first, Iter last) {
4154 typedef typename ::std::iterator_traits<Iter>::value_type T;
4155 return internal::ElementsAreArrayMatcher<T>(first, last);
4156}
4157
4158template <typename T>
4159inline auto ElementsAreArray(const T* pointer, size_t count)
4160 -> decltype(ElementsAreArray(pointer, pointer + count)) {
4161 return ElementsAreArray(pointer, pointer + count);
4162}
4163
4164template <typename T, size_t N>
4165inline auto ElementsAreArray(const T (&array)[N])
4166 -> decltype(ElementsAreArray(array, N)) {
4167 return ElementsAreArray(array, N);
4168}
4169
4170template <typename Container>
4171inline auto ElementsAreArray(const Container& container)
4172 -> decltype(ElementsAreArray(container.begin(), container.end())) {
4173 return ElementsAreArray(container.begin(), container.end());
4174}
4175
4176template <typename T>
4177inline auto ElementsAreArray(::std::initializer_list<T> xs)
4178 -> decltype(ElementsAreArray(xs.begin(), xs.end())) {
4179 return ElementsAreArray(xs.begin(), xs.end());
4180}
4181
4182// UnorderedElementsAreArray(iterator_first, iterator_last)
4183// UnorderedElementsAreArray(pointer, count)
4184// UnorderedElementsAreArray(array)
4185// UnorderedElementsAreArray(container)
4186// UnorderedElementsAreArray({ e1, e2, ..., en })
4187//
4188// UnorderedElementsAreArray() verifies that a bijective mapping onto a
4189// collection of matchers exists.
4190//
4191// The matchers can be specified as an array, a pointer and count, a container,
4192// an initializer list, or an STL iterator range. In each of these cases, the
4193// underlying matchers can be either values or matchers.
4194
4195template <typename Iter>
4196inline internal::UnorderedElementsAreArrayMatcher<
4197 typename ::std::iterator_traits<Iter>::value_type>
4198UnorderedElementsAreArray(Iter first, Iter last) {
4199 typedef typename ::std::iterator_traits<Iter>::value_type T;
4200 return internal::UnorderedElementsAreArrayMatcher<T>(
4201 internal::UnorderedMatcherRequire::ExactMatch, first, last);
4202}
4203
4204template <typename T>
4205inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4206 const T* pointer, size_t count) {
4207 return UnorderedElementsAreArray(pointer, pointer + count);
4208}
4209
4210template <typename T, size_t N>
4211inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4212 const T (&array)[N]) {
4213 return UnorderedElementsAreArray(array, N);
4214}
4215
4216template <typename Container>
4217inline internal::UnorderedElementsAreArrayMatcher<
4218 typename Container::value_type>
4219UnorderedElementsAreArray(const Container& container) {
4220 return UnorderedElementsAreArray(container.begin(), container.end());
4221}
4222
4223template <typename T>
4224inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4225 ::std::initializer_list<T> xs) {
4226 return UnorderedElementsAreArray(xs.begin(), xs.end());
4227}
4228
4229// _ is a matcher that matches anything of any type.
4230//
4231// This definition is fine as:
4232//
4233// 1. The C++ standard permits using the name _ in a namespace that
4234// is not the global namespace or ::std.
4235// 2. The AnythingMatcher class has no data member or constructor,
4236// so it's OK to create global variables of this type.
4237// 3. c-style has approved of using _ in this case.
4238const internal::AnythingMatcher _ = {};
4239// Creates a matcher that matches any value of the given type T.
4240template <typename T>
4241inline Matcher<T> A() {
4242 return _;
4243}
4244
4245// Creates a matcher that matches any value of the given type T.
4246template <typename T>
4247inline Matcher<T> An() {
4248 return _;
4249}
4250
4251template <typename T, typename M>
4252Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4253 const M& value, std::false_type /* convertible_to_matcher */,
4254 std::false_type /* convertible_to_T */) {
4255 return Eq(value);
4256}
4257
4258// Creates a polymorphic matcher that matches any NULL pointer.
4259inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() {
4260 return MakePolymorphicMatcher(impl: internal::IsNullMatcher());
4261}
4262
4263// Creates a polymorphic matcher that matches any non-NULL pointer.
4264// This is convenient as Not(NULL) doesn't compile (the compiler
4265// thinks that that expression is comparing a pointer with an integer).
4266inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() {
4267 return MakePolymorphicMatcher(impl: internal::NotNullMatcher());
4268}
4269
4270// Creates a polymorphic matcher that matches any argument that
4271// references variable x.
4272template <typename T>
4273inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
4274 return internal::RefMatcher<T&>(x);
4275}
4276
4277// Creates a polymorphic matcher that matches any NaN floating point.
4278inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4279 return MakePolymorphicMatcher(impl: internal::IsNanMatcher());
4280}
4281
4282// Creates a matcher that matches any double argument approximately
4283// equal to rhs, where two NANs are considered unequal.
4284inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4285 return internal::FloatingEqMatcher<double>(rhs, false);
4286}
4287
4288// Creates a matcher that matches any double argument approximately
4289// equal to rhs, including NaN values when rhs is NaN.
4290inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4291 return internal::FloatingEqMatcher<double>(rhs, true);
4292}
4293
4294// Creates a matcher that matches any double argument approximately equal to
4295// rhs, up to the specified max absolute error bound, where two NANs are
4296// considered unequal. The max absolute error bound must be non-negative.
4297inline internal::FloatingEqMatcher<double> DoubleNear(double rhs,
4298 double max_abs_error) {
4299 return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4300}
4301
4302// Creates a matcher that matches any double argument approximately equal to
4303// rhs, up to the specified max absolute error bound, including NaN values when
4304// rhs is NaN. The max absolute error bound must be non-negative.
4305inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4306 double rhs, double max_abs_error) {
4307 return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4308}
4309
4310// Creates a matcher that matches any float argument approximately
4311// equal to rhs, where two NANs are considered unequal.
4312inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4313 return internal::FloatingEqMatcher<float>(rhs, false);
4314}
4315
4316// Creates a matcher that matches any float argument approximately
4317// equal to rhs, including NaN values when rhs is NaN.
4318inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4319 return internal::FloatingEqMatcher<float>(rhs, true);
4320}
4321
4322// Creates a matcher that matches any float argument approximately equal to
4323// rhs, up to the specified max absolute error bound, where two NANs are
4324// considered unequal. The max absolute error bound must be non-negative.
4325inline internal::FloatingEqMatcher<float> FloatNear(float rhs,
4326 float max_abs_error) {
4327 return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4328}
4329
4330// Creates a matcher that matches any float argument approximately equal to
4331// rhs, up to the specified max absolute error bound, including NaN values when
4332// rhs is NaN. The max absolute error bound must be non-negative.
4333inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4334 float rhs, float max_abs_error) {
4335 return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4336}
4337
4338// Creates a matcher that matches a pointer (raw or smart) that points
4339// to a value that matches inner_matcher.
4340template <typename InnerMatcher>
4341inline internal::PointeeMatcher<InnerMatcher> Pointee(
4342 const InnerMatcher& inner_matcher) {
4343 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4344}
4345
4346#if GTEST_HAS_RTTI
4347// Creates a matcher that matches a pointer or reference that matches
4348// inner_matcher when dynamic_cast<To> is applied.
4349// The result of dynamic_cast<To> is forwarded to the inner matcher.
4350// If To is a pointer and the cast fails, the inner matcher will receive NULL.
4351// If To is a reference and the cast fails, this matcher returns false
4352// immediately.
4353template <typename To>
4354inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>>
4355WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4356 return MakePolymorphicMatcher(
4357 internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4358}
4359#endif // GTEST_HAS_RTTI
4360
4361// Creates a matcher that matches an object whose given field matches
4362// 'matcher'. For example,
4363// Field(&Foo::number, Ge(5))
4364// matches a Foo object x if and only if x.number >= 5.
4365template <typename Class, typename FieldType, typename FieldMatcher>
4366inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4367 FieldType Class::*field, const FieldMatcher& matcher) {
4368 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4369 field, MatcherCast<const FieldType&>(matcher)));
4370 // The call to MatcherCast() is required for supporting inner
4371 // matchers of compatible types. For example, it allows
4372 // Field(&Foo::bar, m)
4373 // to compile where bar is an int32 and m is a matcher for int64.
4374}
4375
4376// Same as Field() but also takes the name of the field to provide better error
4377// messages.
4378template <typename Class, typename FieldType, typename FieldMatcher>
4379inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4380 const std::string& field_name, FieldType Class::*field,
4381 const FieldMatcher& matcher) {
4382 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4383 field_name, field, MatcherCast<const FieldType&>(matcher)));
4384}
4385
4386// Creates a matcher that matches an object whose given property
4387// matches 'matcher'. For example,
4388// Property(&Foo::str, StartsWith("hi"))
4389// matches a Foo object x if and only if x.str() starts with "hi".
4390template <typename Class, typename PropertyType, typename PropertyMatcher>
4391inline PolymorphicMatcher<internal::PropertyMatcher<
4392 Class, PropertyType, PropertyType (Class::*)() const>>
4393Property(PropertyType (Class::*property)() const,
4394 const PropertyMatcher& matcher) {
4395 return MakePolymorphicMatcher(
4396 internal::PropertyMatcher<Class, PropertyType,
4397 PropertyType (Class::*)() const>(
4398 property, MatcherCast<const PropertyType&>(matcher)));
4399 // The call to MatcherCast() is required for supporting inner
4400 // matchers of compatible types. For example, it allows
4401 // Property(&Foo::bar, m)
4402 // to compile where bar() returns an int32 and m is a matcher for int64.
4403}
4404
4405// Same as Property() above, but also takes the name of the property to provide
4406// better error messages.
4407template <typename Class, typename PropertyType, typename PropertyMatcher>
4408inline PolymorphicMatcher<internal::PropertyMatcher<
4409 Class, PropertyType, PropertyType (Class::*)() const>>
4410Property(const std::string& property_name,
4411 PropertyType (Class::*property)() const,
4412 const PropertyMatcher& matcher) {
4413 return MakePolymorphicMatcher(
4414 internal::PropertyMatcher<Class, PropertyType,
4415 PropertyType (Class::*)() const>(
4416 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4417}
4418
4419// The same as above but for reference-qualified member functions.
4420template <typename Class, typename PropertyType, typename PropertyMatcher>
4421inline PolymorphicMatcher<internal::PropertyMatcher<
4422 Class, PropertyType, PropertyType (Class::*)() const&>>
4423Property(PropertyType (Class::*property)() const&,
4424 const PropertyMatcher& matcher) {
4425 return MakePolymorphicMatcher(
4426 internal::PropertyMatcher<Class, PropertyType,
4427 PropertyType (Class::*)() const&>(
4428 property, MatcherCast<const PropertyType&>(matcher)));
4429}
4430
4431// Three-argument form for reference-qualified member functions.
4432template <typename Class, typename PropertyType, typename PropertyMatcher>
4433inline PolymorphicMatcher<internal::PropertyMatcher<
4434 Class, PropertyType, PropertyType (Class::*)() const&>>
4435Property(const std::string& property_name,
4436 PropertyType (Class::*property)() const&,
4437 const PropertyMatcher& matcher) {
4438 return MakePolymorphicMatcher(
4439 internal::PropertyMatcher<Class, PropertyType,
4440 PropertyType (Class::*)() const&>(
4441 property_name, property, MatcherCast<const PropertyType&>(matcher)));
4442}
4443
4444// Creates a matcher that matches an object if and only if the result of
4445// applying a callable to x matches 'matcher'. For example,
4446// ResultOf(f, StartsWith("hi"))
4447// matches a Foo object x if and only if f(x) starts with "hi".
4448// `callable` parameter can be a function, function pointer, or a functor. It is
4449// required to keep no state affecting the results of the calls on it and make
4450// no assumptions about how many calls will be made. Any state it keeps must be
4451// protected from the concurrent access.
4452template <typename Callable, typename InnerMatcher>
4453internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4454 Callable callable, InnerMatcher matcher) {
4455 return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable),
4456 std::move(matcher));
4457}
4458
4459// Same as ResultOf() above, but also takes a description of the `callable`
4460// result to provide better error messages.
4461template <typename Callable, typename InnerMatcher>
4462internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4463 const std::string& result_description, Callable callable,
4464 InnerMatcher matcher) {
4465 return internal::ResultOfMatcher<Callable, InnerMatcher>(
4466 result_description, std::move(callable), std::move(matcher));
4467}
4468
4469// String matchers.
4470
4471// Matches a string equal to str.
4472template <typename T = std::string>
4473PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq(
4474 const internal::StringLike<T>& str) {
4475 return MakePolymorphicMatcher(
4476 impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4477}
4478
4479// Matches a string not equal to str.
4480template <typename T = std::string>
4481PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe(
4482 const internal::StringLike<T>& str) {
4483 return MakePolymorphicMatcher(
4484 impl: internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4485}
4486
4487// Matches a string equal to str, ignoring case.
4488template <typename T = std::string>
4489PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq(
4490 const internal::StringLike<T>& str) {
4491 return MakePolymorphicMatcher(
4492 impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4493}
4494
4495// Matches a string not equal to str, ignoring case.
4496template <typename T = std::string>
4497PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe(
4498 const internal::StringLike<T>& str) {
4499 return MakePolymorphicMatcher(impl: internal::StrEqualityMatcher<std::string>(
4500 std::string(str), false, false));
4501}
4502
4503// Creates a matcher that matches any string, std::string, or C string
4504// that contains the given substring.
4505template <typename T = std::string>
4506PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr(
4507 const internal::StringLike<T>& substring) {
4508 return MakePolymorphicMatcher(
4509 impl: internal::HasSubstrMatcher<std::string>(std::string(substring)));
4510}
4511
4512// Matches a string that starts with 'prefix' (case-sensitive).
4513template <typename T = std::string>
4514PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith(
4515 const internal::StringLike<T>& prefix) {
4516 return MakePolymorphicMatcher(
4517 impl: internal::StartsWithMatcher<std::string>(std::string(prefix)));
4518}
4519
4520// Matches a string that ends with 'suffix' (case-sensitive).
4521template <typename T = std::string>
4522PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith(
4523 const internal::StringLike<T>& suffix) {
4524 return MakePolymorphicMatcher(
4525 impl: internal::EndsWithMatcher<std::string>(std::string(suffix)));
4526}
4527
4528#if GTEST_HAS_STD_WSTRING
4529// Wide string matchers.
4530
4531// Matches a string equal to str.
4532inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq(
4533 const std::wstring& str) {
4534 return MakePolymorphicMatcher(
4535 impl: internal::StrEqualityMatcher<std::wstring>(str, true, true));
4536}
4537
4538// Matches a string not equal to str.
4539inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe(
4540 const std::wstring& str) {
4541 return MakePolymorphicMatcher(
4542 impl: internal::StrEqualityMatcher<std::wstring>(str, false, true));
4543}
4544
4545// Matches a string equal to str, ignoring case.
4546inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq(
4547 const std::wstring& str) {
4548 return MakePolymorphicMatcher(
4549 impl: internal::StrEqualityMatcher<std::wstring>(str, true, false));
4550}
4551
4552// Matches a string not equal to str, ignoring case.
4553inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe(
4554 const std::wstring& str) {
4555 return MakePolymorphicMatcher(
4556 impl: internal::StrEqualityMatcher<std::wstring>(str, false, false));
4557}
4558
4559// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4560// that contains the given substring.
4561inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr(
4562 const std::wstring& substring) {
4563 return MakePolymorphicMatcher(
4564 impl: internal::HasSubstrMatcher<std::wstring>(substring));
4565}
4566
4567// Matches a string that starts with 'prefix' (case-sensitive).
4568inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith(
4569 const std::wstring& prefix) {
4570 return MakePolymorphicMatcher(
4571 impl: internal::StartsWithMatcher<std::wstring>(prefix));
4572}
4573
4574// Matches a string that ends with 'suffix' (case-sensitive).
4575inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith(
4576 const std::wstring& suffix) {
4577 return MakePolymorphicMatcher(
4578 impl: internal::EndsWithMatcher<std::wstring>(suffix));
4579}
4580
4581#endif // GTEST_HAS_STD_WSTRING
4582
4583// Creates a polymorphic matcher that matches a 2-tuple where the
4584// first field == the second field.
4585inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4586
4587// Creates a polymorphic matcher that matches a 2-tuple where the
4588// first field >= the second field.
4589inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4590
4591// Creates a polymorphic matcher that matches a 2-tuple where the
4592// first field > the second field.
4593inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4594
4595// Creates a polymorphic matcher that matches a 2-tuple where the
4596// first field <= the second field.
4597inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4598
4599// Creates a polymorphic matcher that matches a 2-tuple where the
4600// first field < the second field.
4601inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4602
4603// Creates a polymorphic matcher that matches a 2-tuple where the
4604// first field != the second field.
4605inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4606
4607// Creates a polymorphic matcher that matches a 2-tuple where
4608// FloatEq(first field) matches the second field.
4609inline internal::FloatingEq2Matcher<float> FloatEq() {
4610 return internal::FloatingEq2Matcher<float>();
4611}
4612
4613// Creates a polymorphic matcher that matches a 2-tuple where
4614// DoubleEq(first field) matches the second field.
4615inline internal::FloatingEq2Matcher<double> DoubleEq() {
4616 return internal::FloatingEq2Matcher<double>();
4617}
4618
4619// Creates a polymorphic matcher that matches a 2-tuple where
4620// FloatEq(first field) matches the second field with NaN equality.
4621inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4622 return internal::FloatingEq2Matcher<float>(true);
4623}
4624
4625// Creates a polymorphic matcher that matches a 2-tuple where
4626// DoubleEq(first field) matches the second field with NaN equality.
4627inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4628 return internal::FloatingEq2Matcher<double>(true);
4629}
4630
4631// Creates a polymorphic matcher that matches a 2-tuple where
4632// FloatNear(first field, max_abs_error) matches the second field.
4633inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4634 return internal::FloatingEq2Matcher<float>(max_abs_error);
4635}
4636
4637// Creates a polymorphic matcher that matches a 2-tuple where
4638// DoubleNear(first field, max_abs_error) matches the second field.
4639inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4640 return internal::FloatingEq2Matcher<double>(max_abs_error);
4641}
4642
4643// Creates a polymorphic matcher that matches a 2-tuple where
4644// FloatNear(first field, max_abs_error) matches the second field with NaN
4645// equality.
4646inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4647 float max_abs_error) {
4648 return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4649}
4650
4651// Creates a polymorphic matcher that matches a 2-tuple where
4652// DoubleNear(first field, max_abs_error) matches the second field with NaN
4653// equality.
4654inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4655 double max_abs_error) {
4656 return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4657}
4658
4659// Creates a matcher that matches any value of type T that m doesn't
4660// match.
4661template <typename InnerMatcher>
4662inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4663 return internal::NotMatcher<InnerMatcher>(m);
4664}
4665
4666// Returns a matcher that matches anything that satisfies the given
4667// predicate. The predicate can be any unary function or functor
4668// whose return type can be implicitly converted to bool.
4669template <typename Predicate>
4670inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly(
4671 Predicate pred) {
4672 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4673}
4674
4675// Returns a matcher that matches the container size. The container must
4676// support both size() and size_type which all STL-like containers provide.
4677// Note that the parameter 'size' can be a value of type size_type as well as
4678// matcher. For instance:
4679// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
4680// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
4681template <typename SizeMatcher>
4682inline internal::SizeIsMatcher<SizeMatcher> SizeIs(
4683 const SizeMatcher& size_matcher) {
4684 return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4685}
4686
4687// Returns a matcher that matches the distance between the container's begin()
4688// iterator and its end() iterator, i.e. the size of the container. This matcher
4689// can be used instead of SizeIs with containers such as std::forward_list which
4690// do not implement size(). The container must provide const_iterator (with
4691// valid iterator_traits), begin() and end().
4692template <typename DistanceMatcher>
4693inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(
4694 const DistanceMatcher& distance_matcher) {
4695 return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4696}
4697
4698// Returns a matcher that matches an equal container.
4699// This matcher behaves like Eq(), but in the event of mismatch lists the
4700// values that are included in one container but not the other. (Duplicate
4701// values and order differences are not explained.)
4702template <typename Container>
4703inline PolymorphicMatcher<
4704 internal::ContainerEqMatcher<typename std::remove_const<Container>::type>>
4705ContainerEq(const Container& rhs) {
4706 return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4707}
4708
4709// Returns a matcher that matches a container that, when sorted using
4710// the given comparator, matches container_matcher.
4711template <typename Comparator, typename ContainerMatcher>
4712inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(
4713 const Comparator& comparator, const ContainerMatcher& container_matcher) {
4714 return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4715 comparator, container_matcher);
4716}
4717
4718// Returns a matcher that matches a container that, when sorted using
4719// the < operator, matches container_matcher.
4720template <typename ContainerMatcher>
4721inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4722WhenSorted(const ContainerMatcher& container_matcher) {
4723 return internal::WhenSortedByMatcher<internal::LessComparator,
4724 ContainerMatcher>(
4725 internal::LessComparator(), container_matcher);
4726}
4727
4728// Matches an STL-style container or a native array that contains the
4729// same number of elements as in rhs, where its i-th element and rhs's
4730// i-th element (as a pair) satisfy the given pair matcher, for all i.
4731// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4732// T1&, const T2&> >, where T1 and T2 are the types of elements in the
4733// LHS container and the RHS container respectively.
4734template <typename TupleMatcher, typename Container>
4735inline internal::PointwiseMatcher<TupleMatcher,
4736 typename std::remove_const<Container>::type>
4737Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4738 return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4739 rhs);
4740}
4741
4742// Supports the Pointwise(m, {a, b, c}) syntax.
4743template <typename TupleMatcher, typename T>
4744inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise(
4745 const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4746 return Pointwise(tuple_matcher, std::vector<T>(rhs));
4747}
4748
4749// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4750// container or a native array that contains the same number of
4751// elements as in rhs, where in some permutation of the container, its
4752// i-th element and rhs's i-th element (as a pair) satisfy the given
4753// pair matcher, for all i. Tuple2Matcher must be able to be safely
4754// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4755// the types of elements in the LHS container and the RHS container
4756// respectively.
4757//
4758// This is like Pointwise(pair_matcher, rhs), except that the element
4759// order doesn't matter.
4760template <typename Tuple2Matcher, typename RhsContainer>
4761inline internal::UnorderedElementsAreArrayMatcher<
4762 typename internal::BoundSecondMatcher<
4763 Tuple2Matcher,
4764 typename internal::StlContainerView<
4765 typename std::remove_const<RhsContainer>::type>::type::value_type>>
4766UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4767 const RhsContainer& rhs_container) {
4768 // RhsView allows the same code to handle RhsContainer being a
4769 // STL-style container and it being a native C-style array.
4770 typedef typename internal::StlContainerView<RhsContainer> RhsView;
4771 typedef typename RhsView::type RhsStlContainer;
4772 typedef typename RhsStlContainer::value_type Second;
4773 const RhsStlContainer& rhs_stl_container =
4774 RhsView::ConstReference(rhs_container);
4775
4776 // Create a matcher for each element in rhs_container.
4777 ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers;
4778 for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end();
4779 ++it) {
4780 matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it));
4781 }
4782
4783 // Delegate the work to UnorderedElementsAreArray().
4784 return UnorderedElementsAreArray(matchers);
4785}
4786
4787// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4788template <typename Tuple2Matcher, typename T>
4789inline internal::UnorderedElementsAreArrayMatcher<
4790 typename internal::BoundSecondMatcher<Tuple2Matcher, T>>
4791UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4792 std::initializer_list<T> rhs) {
4793 return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4794}
4795
4796// Matches an STL-style container or a native array that contains at
4797// least one element matching the given value or matcher.
4798//
4799// Examples:
4800// ::std::set<int> page_ids;
4801// page_ids.insert(3);
4802// page_ids.insert(1);
4803// EXPECT_THAT(page_ids, Contains(1));
4804// EXPECT_THAT(page_ids, Contains(Gt(2)));
4805// EXPECT_THAT(page_ids, Not(Contains(4))); // See below for Times(0)
4806//
4807// ::std::map<int, size_t> page_lengths;
4808// page_lengths[1] = 100;
4809// EXPECT_THAT(page_lengths,
4810// Contains(::std::pair<const int, size_t>(1, 100)));
4811//
4812// const char* user_ids[] = { "joe", "mike", "tom" };
4813// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4814//
4815// The matcher supports a modifier `Times` that allows to check for arbitrary
4816// occurrences including testing for absence with Times(0).
4817//
4818// Examples:
4819// ::std::vector<int> ids;
4820// ids.insert(1);
4821// ids.insert(1);
4822// ids.insert(3);
4823// EXPECT_THAT(ids, Contains(1).Times(2)); // 1 occurs 2 times
4824// EXPECT_THAT(ids, Contains(2).Times(0)); // 2 is not present
4825// EXPECT_THAT(ids, Contains(3).Times(Ge(1))); // 3 occurs at least once
4826
4827template <typename M>
4828inline internal::ContainsMatcher<M> Contains(M matcher) {
4829 return internal::ContainsMatcher<M>(matcher);
4830}
4831
4832// IsSupersetOf(iterator_first, iterator_last)
4833// IsSupersetOf(pointer, count)
4834// IsSupersetOf(array)
4835// IsSupersetOf(container)
4836// IsSupersetOf({e1, e2, ..., en})
4837//
4838// IsSupersetOf() verifies that a surjective partial mapping onto a collection
4839// of matchers exists. In other words, a container matches
4840// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4841// {y1, ..., yn} of some of the container's elements where y1 matches e1,
4842// ..., and yn matches en. Obviously, the size of the container must be >= n
4843// in order to have a match. Examples:
4844//
4845// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4846// 1 matches Ne(0).
4847// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4848// both Eq(1) and Lt(2). The reason is that different matchers must be used
4849// for elements in different slots of the container.
4850// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4851// Eq(1) and (the second) 1 matches Lt(2).
4852// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4853// Gt(1) and 3 matches (the second) Gt(1).
4854//
4855// The matchers can be specified as an array, a pointer and count, a container,
4856// an initializer list, or an STL iterator range. In each of these cases, the
4857// underlying matchers can be either values or matchers.
4858
4859template <typename Iter>
4860inline internal::UnorderedElementsAreArrayMatcher<
4861 typename ::std::iterator_traits<Iter>::value_type>
4862IsSupersetOf(Iter first, Iter last) {
4863 typedef typename ::std::iterator_traits<Iter>::value_type T;
4864 return internal::UnorderedElementsAreArrayMatcher<T>(
4865 internal::UnorderedMatcherRequire::Superset, first, last);
4866}
4867
4868template <typename T>
4869inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4870 const T* pointer, size_t count) {
4871 return IsSupersetOf(pointer, pointer + count);
4872}
4873
4874template <typename T, size_t N>
4875inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4876 const T (&array)[N]) {
4877 return IsSupersetOf(array, N);
4878}
4879
4880template <typename Container>
4881inline internal::UnorderedElementsAreArrayMatcher<
4882 typename Container::value_type>
4883IsSupersetOf(const Container& container) {
4884 return IsSupersetOf(container.begin(), container.end());
4885}
4886
4887template <typename T>
4888inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4889 ::std::initializer_list<T> xs) {
4890 return IsSupersetOf(xs.begin(), xs.end());
4891}
4892
4893// IsSubsetOf(iterator_first, iterator_last)
4894// IsSubsetOf(pointer, count)
4895// IsSubsetOf(array)
4896// IsSubsetOf(container)
4897// IsSubsetOf({e1, e2, ..., en})
4898//
4899// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4900// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4901// only if there is a subset of matchers {m1, ..., mk} which would match the
4902// container using UnorderedElementsAre. Obviously, the size of the container
4903// must be <= n in order to have a match. Examples:
4904//
4905// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4906// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4907// matches Lt(0).
4908// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4909// match Gt(0). The reason is that different matchers must be used for
4910// elements in different slots of the container.
4911//
4912// The matchers can be specified as an array, a pointer and count, a container,
4913// an initializer list, or an STL iterator range. In each of these cases, the
4914// underlying matchers can be either values or matchers.
4915
4916template <typename Iter>
4917inline internal::UnorderedElementsAreArrayMatcher<
4918 typename ::std::iterator_traits<Iter>::value_type>
4919IsSubsetOf(Iter first, Iter last) {
4920 typedef typename ::std::iterator_traits<Iter>::value_type T;
4921 return internal::UnorderedElementsAreArrayMatcher<T>(
4922 internal::UnorderedMatcherRequire::Subset, first, last);
4923}
4924
4925template <typename T>
4926inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4927 const T* pointer, size_t count) {
4928 return IsSubsetOf(pointer, pointer + count);
4929}
4930
4931template <typename T, size_t N>
4932inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4933 const T (&array)[N]) {
4934 return IsSubsetOf(array, N);
4935}
4936
4937template <typename Container>
4938inline internal::UnorderedElementsAreArrayMatcher<
4939 typename Container::value_type>
4940IsSubsetOf(const Container& container) {
4941 return IsSubsetOf(container.begin(), container.end());
4942}
4943
4944template <typename T>
4945inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4946 ::std::initializer_list<T> xs) {
4947 return IsSubsetOf(xs.begin(), xs.end());
4948}
4949
4950// Matches an STL-style container or a native array that contains only
4951// elements matching the given value or matcher.
4952//
4953// Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only
4954// the messages are different.
4955//
4956// Examples:
4957// ::std::set<int> page_ids;
4958// // Each(m) matches an empty container, regardless of what m is.
4959// EXPECT_THAT(page_ids, Each(Eq(1)));
4960// EXPECT_THAT(page_ids, Each(Eq(77)));
4961//
4962// page_ids.insert(3);
4963// EXPECT_THAT(page_ids, Each(Gt(0)));
4964// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4965// page_ids.insert(1);
4966// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4967//
4968// ::std::map<int, size_t> page_lengths;
4969// page_lengths[1] = 100;
4970// page_lengths[2] = 200;
4971// page_lengths[3] = 300;
4972// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4973// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4974//
4975// const char* user_ids[] = { "joe", "mike", "tom" };
4976// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4977template <typename M>
4978inline internal::EachMatcher<M> Each(M matcher) {
4979 return internal::EachMatcher<M>(matcher);
4980}
4981
4982// Key(inner_matcher) matches an std::pair whose 'first' field matches
4983// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
4984// std::map that contains at least one element whose key is >= 5.
4985template <typename M>
4986inline internal::KeyMatcher<M> Key(M inner_matcher) {
4987 return internal::KeyMatcher<M>(inner_matcher);
4988}
4989
4990// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4991// matches first_matcher and whose 'second' field matches second_matcher. For
4992// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4993// to match a std::map<int, string> that contains exactly one element whose key
4994// is >= 5 and whose value equals "foo".
4995template <typename FirstMatcher, typename SecondMatcher>
4996inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(
4997 FirstMatcher first_matcher, SecondMatcher second_matcher) {
4998 return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher,
4999 second_matcher);
5000}
5001
5002namespace no_adl {
5003// Conditional() creates a matcher that conditionally uses either the first or
5004// second matcher provided. For example, we could create an `equal if, and only
5005// if' matcher using the Conditional wrapper as follows:
5006//
5007// EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected)));
5008template <typename MatcherTrue, typename MatcherFalse>
5009internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional(
5010 bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) {
5011 return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>(
5012 condition, std::move(matcher_true), std::move(matcher_false));
5013}
5014
5015// FieldsAre(matchers...) matches piecewise the fields of compatible structs.
5016// These include those that support `get<I>(obj)`, and when structured bindings
5017// are enabled any class that supports them.
5018// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
5019template <typename... M>
5020internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
5021 M&&... matchers) {
5022 return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
5023 std::forward<M>(matchers)...);
5024}
5025
5026// Creates a matcher that matches a pointer (raw or smart) that matches
5027// inner_matcher.
5028template <typename InnerMatcher>
5029inline internal::PointerMatcher<InnerMatcher> Pointer(
5030 const InnerMatcher& inner_matcher) {
5031 return internal::PointerMatcher<InnerMatcher>(inner_matcher);
5032}
5033
5034// Creates a matcher that matches an object that has an address that matches
5035// inner_matcher.
5036template <typename InnerMatcher>
5037inline internal::AddressMatcher<InnerMatcher> Address(
5038 const InnerMatcher& inner_matcher) {
5039 return internal::AddressMatcher<InnerMatcher>(inner_matcher);
5040}
5041
5042// Matches a base64 escaped string, when the unescaped string matches the
5043// internal matcher.
5044template <typename MatcherType>
5045internal::WhenBase64UnescapedMatcher WhenBase64Unescaped(
5046 const MatcherType& internal_matcher) {
5047 return internal::WhenBase64UnescapedMatcher(internal_matcher);
5048}
5049} // namespace no_adl
5050
5051// Returns a predicate that is satisfied by anything that matches the
5052// given matcher.
5053template <typename M>
5054inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5055 return internal::MatcherAsPredicate<M>(matcher);
5056}
5057
5058// Returns true if and only if the value matches the matcher.
5059template <typename T, typename M>
5060inline bool Value(const T& value, M matcher) {
5061 return testing::Matches(matcher)(value);
5062}
5063
5064// Matches the value against the given matcher and explains the match
5065// result to listener.
5066template <typename T, typename M>
5067inline bool ExplainMatchResult(M matcher, const T& value,
5068 MatchResultListener* listener) {
5069 return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5070}
5071
5072// Returns a string representation of the given matcher. Useful for description
5073// strings of matchers defined using MATCHER_P* macros that accept matchers as
5074// their arguments. For example:
5075//
5076// MATCHER_P(XAndYThat, matcher,
5077// "X that " + DescribeMatcher<int>(matcher, negation) +
5078// (negation ? " or" : " and") + " Y that " +
5079// DescribeMatcher<double>(matcher, negation)) {
5080// return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5081// ExplainMatchResult(matcher, arg.y(), result_listener);
5082// }
5083template <typename T, typename M>
5084std::string DescribeMatcher(const M& matcher, bool negation = false) {
5085 ::std::stringstream ss;
5086 Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5087 if (negation) {
5088 monomorphic_matcher.DescribeNegationTo(&ss);
5089 } else {
5090 monomorphic_matcher.DescribeTo(&ss);
5091 }
5092 return ss.str();
5093}
5094
5095template <typename... Args>
5096internal::ElementsAreMatcher<
5097 std::tuple<typename std::decay<const Args&>::type...>>
5098ElementsAre(const Args&... matchers) {
5099 return internal::ElementsAreMatcher<
5100 std::tuple<typename std::decay<const Args&>::type...>>(
5101 std::make_tuple(matchers...));
5102}
5103
5104template <typename... Args>
5105internal::UnorderedElementsAreMatcher<
5106 std::tuple<typename std::decay<const Args&>::type...>>
5107UnorderedElementsAre(const Args&... matchers) {
5108 return internal::UnorderedElementsAreMatcher<
5109 std::tuple<typename std::decay<const Args&>::type...>>(
5110 std::make_tuple(matchers...));
5111}
5112
5113// Define variadic matcher versions.
5114template <typename... Args>
5115internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5116 const Args&... matchers) {
5117 return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5118 matchers...);
5119}
5120
5121template <typename... Args>
5122internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5123 const Args&... matchers) {
5124 return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5125 matchers...);
5126}
5127
5128// AnyOfArray(array)
5129// AnyOfArray(pointer, count)
5130// AnyOfArray(container)
5131// AnyOfArray({ e1, e2, ..., en })
5132// AnyOfArray(iterator_first, iterator_last)
5133//
5134// AnyOfArray() verifies whether a given value matches any member of a
5135// collection of matchers.
5136//
5137// AllOfArray(array)
5138// AllOfArray(pointer, count)
5139// AllOfArray(container)
5140// AllOfArray({ e1, e2, ..., en })
5141// AllOfArray(iterator_first, iterator_last)
5142//
5143// AllOfArray() verifies whether a given value matches all members of a
5144// collection of matchers.
5145//
5146// The matchers can be specified as an array, a pointer and count, a container,
5147// an initializer list, or an STL iterator range. In each of these cases, the
5148// underlying matchers can be either values or matchers.
5149
5150template <typename Iter>
5151inline internal::AnyOfArrayMatcher<
5152 typename ::std::iterator_traits<Iter>::value_type>
5153AnyOfArray(Iter first, Iter last) {
5154 return internal::AnyOfArrayMatcher<
5155 typename ::std::iterator_traits<Iter>::value_type>(first, last);
5156}
5157
5158template <typename Iter>
5159inline internal::AllOfArrayMatcher<
5160 typename ::std::iterator_traits<Iter>::value_type>
5161AllOfArray(Iter first, Iter last) {
5162 return internal::AllOfArrayMatcher<
5163 typename ::std::iterator_traits<Iter>::value_type>(first, last);
5164}
5165
5166template <typename T>
5167inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
5168 return AnyOfArray(ptr, ptr + count);
5169}
5170
5171template <typename T>
5172inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
5173 return AllOfArray(ptr, ptr + count);
5174}
5175
5176template <typename T, size_t N>
5177inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
5178 return AnyOfArray(array, N);
5179}
5180
5181template <typename T, size_t N>
5182inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
5183 return AllOfArray(array, N);
5184}
5185
5186template <typename Container>
5187inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
5188 const Container& container) {
5189 return AnyOfArray(container.begin(), container.end());
5190}
5191
5192template <typename Container>
5193inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
5194 const Container& container) {
5195 return AllOfArray(container.begin(), container.end());
5196}
5197
5198template <typename T>
5199inline internal::AnyOfArrayMatcher<T> AnyOfArray(
5200 ::std::initializer_list<T> xs) {
5201 return AnyOfArray(xs.begin(), xs.end());
5202}
5203
5204template <typename T>
5205inline internal::AllOfArrayMatcher<T> AllOfArray(
5206 ::std::initializer_list<T> xs) {
5207 return AllOfArray(xs.begin(), xs.end());
5208}
5209
5210// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5211// fields of it matches a_matcher. C++ doesn't support default
5212// arguments for function templates, so we have to overload it.
5213template <size_t... k, typename InnerMatcher>
5214internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5215 InnerMatcher&& matcher) {
5216 return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5217 std::forward<InnerMatcher>(matcher));
5218}
5219
5220// AllArgs(m) is a synonym of m. This is useful in
5221//
5222// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5223//
5224// which is easier to read than
5225//
5226// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5227template <typename InnerMatcher>
5228inline InnerMatcher AllArgs(const InnerMatcher& matcher) {
5229 return matcher;
5230}
5231
5232// Returns a matcher that matches the value of an optional<> type variable.
5233// The matcher implementation only uses '!arg' and requires that the optional<>
5234// type has a 'value_type' member type and that '*arg' is of type 'value_type'
5235// and is printable using 'PrintToString'. It is compatible with
5236// std::optional/std::experimental::optional.
5237// Note that to compare an optional type variable against nullopt you should
5238// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5239// optional value contains an optional itself.
5240template <typename ValueMatcher>
5241inline internal::OptionalMatcher<ValueMatcher> Optional(
5242 const ValueMatcher& value_matcher) {
5243 return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5244}
5245
5246// Returns a matcher that matches the value of a absl::any type variable.
5247template <typename T>
5248PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith(
5249 const Matcher<const T&>& matcher) {
5250 return MakePolymorphicMatcher(
5251 internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5252}
5253
5254// Returns a matcher that matches the value of a variant<> type variable.
5255// The matcher implementation uses ADL to find the holds_alternative and get
5256// functions.
5257// It is compatible with std::variant.
5258template <typename T>
5259PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith(
5260 const Matcher<const T&>& matcher) {
5261 return MakePolymorphicMatcher(
5262 internal::variant_matcher::VariantMatcher<T>(matcher));
5263}
5264
5265#if GTEST_HAS_EXCEPTIONS
5266
5267// Anything inside the `internal` namespace is internal to the implementation
5268// and must not be used in user code!
5269namespace internal {
5270
5271class WithWhatMatcherImpl {
5272 public:
5273 WithWhatMatcherImpl(Matcher<std::string> matcher)
5274 : matcher_(std::move(matcher)) {}
5275
5276 void DescribeTo(std::ostream* os) const {
5277 *os << "contains .what() that ";
5278 matcher_.DescribeTo(os);
5279 }
5280
5281 void DescribeNegationTo(std::ostream* os) const {
5282 *os << "contains .what() that does not ";
5283 matcher_.DescribeTo(os);
5284 }
5285
5286 template <typename Err>
5287 bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5288 *listener << "which contains .what() (of value = " << err.what()
5289 << ") that ";
5290 return matcher_.MatchAndExplain(err.what(), listener);
5291 }
5292
5293 private:
5294 const Matcher<std::string> matcher_;
5295};
5296
5297inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5298 Matcher<std::string> m) {
5299 return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5300}
5301
5302template <typename Err>
5303class ExceptionMatcherImpl {
5304 class NeverThrown {
5305 public:
5306 const char* what() const noexcept {
5307 return "this exception should never be thrown";
5308 }
5309 };
5310
5311 // If the matchee raises an exception of a wrong type, we'd like to
5312 // catch it and print its message and type. To do that, we add an additional
5313 // catch clause:
5314 //
5315 // try { ... }
5316 // catch (const Err&) { /* an expected exception */ }
5317 // catch (const std::exception&) { /* exception of a wrong type */ }
5318 //
5319 // However, if the `Err` itself is `std::exception`, we'd end up with two
5320 // identical `catch` clauses:
5321 //
5322 // try { ... }
5323 // catch (const std::exception&) { /* an expected exception */ }
5324 // catch (const std::exception&) { /* exception of a wrong type */ }
5325 //
5326 // This can cause a warning or an error in some compilers. To resolve
5327 // the issue, we use a fake error type whenever `Err` is `std::exception`:
5328 //
5329 // try { ... }
5330 // catch (const std::exception&) { /* an expected exception */ }
5331 // catch (const NeverThrown&) { /* exception of a wrong type */ }
5332 using DefaultExceptionType = typename std::conditional<
5333 std::is_same<typename std::remove_cv<
5334 typename std::remove_reference<Err>::type>::type,
5335 std::exception>::value,
5336 const NeverThrown&, const std::exception&>::type;
5337
5338 public:
5339 ExceptionMatcherImpl(Matcher<const Err&> matcher)
5340 : matcher_(std::move(matcher)) {}
5341
5342 void DescribeTo(std::ostream* os) const {
5343 *os << "throws an exception which is a " << GetTypeName<Err>();
5344 *os << " which ";
5345 matcher_.DescribeTo(os);
5346 }
5347
5348 void DescribeNegationTo(std::ostream* os) const {
5349 *os << "throws an exception which is not a " << GetTypeName<Err>();
5350 *os << " which ";
5351 matcher_.DescribeNegationTo(os);
5352 }
5353
5354 template <typename T>
5355 bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5356 try {
5357 (void)(std::forward<T>(x)());
5358 } catch (const Err& err) {
5359 *listener << "throws an exception which is a " << GetTypeName<Err>();
5360 *listener << " ";
5361 return matcher_.MatchAndExplain(err, listener);
5362 } catch (DefaultExceptionType err) {
5363#if GTEST_HAS_RTTI
5364 *listener << "throws an exception of type " << GetTypeName(typeid(err));
5365 *listener << " ";
5366#else
5367 *listener << "throws an std::exception-derived type ";
5368#endif
5369 *listener << "with description \"" << err.what() << "\"";
5370 return false;
5371 } catch (...) {
5372 *listener << "throws an exception of an unknown type";
5373 return false;
5374 }
5375
5376 *listener << "does not throw any exception";
5377 return false;
5378 }
5379
5380 private:
5381 const Matcher<const Err&> matcher_;
5382};
5383
5384} // namespace internal
5385
5386// Throws()
5387// Throws(exceptionMatcher)
5388// ThrowsMessage(messageMatcher)
5389//
5390// This matcher accepts a callable and verifies that when invoked, it throws
5391// an exception with the given type and properties.
5392//
5393// Examples:
5394//
5395// EXPECT_THAT(
5396// []() { throw std::runtime_error("message"); },
5397// Throws<std::runtime_error>());
5398//
5399// EXPECT_THAT(
5400// []() { throw std::runtime_error("message"); },
5401// ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5402//
5403// EXPECT_THAT(
5404// []() { throw std::runtime_error("message"); },
5405// Throws<std::runtime_error>(
5406// Property(&std::runtime_error::what, HasSubstr("message"))));
5407
5408template <typename Err>
5409PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5410 return MakePolymorphicMatcher(
5411 internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5412}
5413
5414template <typename Err, typename ExceptionMatcher>
5415PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5416 const ExceptionMatcher& exception_matcher) {
5417 // Using matcher cast allows users to pass a matcher of a more broad type.
5418 // For example user may want to pass Matcher<std::exception>
5419 // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5420 return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5421 SafeMatcherCast<const Err&>(exception_matcher)));
5422}
5423
5424template <typename Err, typename MessageMatcher>
5425PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5426 MessageMatcher&& message_matcher) {
5427 static_assert(std::is_base_of<std::exception, Err>::value,
5428 "expected an std::exception-derived type");
5429 return Throws<Err>(internal::WithWhat(
5430 MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5431}
5432
5433#endif // GTEST_HAS_EXCEPTIONS
5434
5435// These macros allow using matchers to check values in Google Test
5436// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5437// succeed if and only if the value matches the matcher. If the assertion
5438// fails, the value and the description of the matcher will be printed.
5439#define ASSERT_THAT(value, matcher) \
5440 ASSERT_PRED_FORMAT1( \
5441 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5442#define EXPECT_THAT(value, matcher) \
5443 EXPECT_PRED_FORMAT1( \
5444 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5445
5446// MATCHER* macros itself are listed below.
5447#define MATCHER(name, description) \
5448 class name##Matcher \
5449 : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
5450 public: \
5451 template <typename arg_type> \
5452 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5453 public: \
5454 gmock_Impl() {} \
5455 bool MatchAndExplain( \
5456 const arg_type& arg, \
5457 ::testing::MatchResultListener* result_listener) const override; \
5458 void DescribeTo(::std::ostream* gmock_os) const override { \
5459 *gmock_os << FormatDescription(false); \
5460 } \
5461 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5462 *gmock_os << FormatDescription(true); \
5463 } \
5464 \
5465 private: \
5466 ::std::string FormatDescription(bool negation) const { \
5467 /* NOLINTNEXTLINE readability-redundant-string-init */ \
5468 ::std::string gmock_description = (description); \
5469 if (!gmock_description.empty()) { \
5470 return gmock_description; \
5471 } \
5472 return ::testing::internal::FormatMatcherDescription(negation, #name, \
5473 {}, {}); \
5474 } \
5475 }; \
5476 }; \
5477 inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH() \
5478 GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function") \
5479 GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function") \
5480 name GMOCK_INTERNAL_WARNING_POP()() { \
5481 return {}; \
5482 } \
5483 template <typename arg_type> \
5484 bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
5485 const arg_type& arg, \
5486 ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
5487 const
5488
5489#define MATCHER_P(name, p0, description) \
5490 GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0))
5491#define MATCHER_P2(name, p0, p1, description) \
5492 GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \
5493 (p0, p1))
5494#define MATCHER_P3(name, p0, p1, p2, description) \
5495 GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \
5496 (p0, p1, p2))
5497#define MATCHER_P4(name, p0, p1, p2, p3, description) \
5498 GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \
5499 (#p0, #p1, #p2, #p3), (p0, p1, p2, p3))
5500#define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
5501 GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5502 (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4))
5503#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5504 GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
5505 (#p0, #p1, #p2, #p3, #p4, #p5), \
5506 (p0, p1, p2, p3, p4, p5))
5507#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5508 GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
5509 (#p0, #p1, #p2, #p3, #p4, #p5, #p6), \
5510 (p0, p1, p2, p3, p4, p5, p6))
5511#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5512 GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
5513 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7), \
5514 (p0, p1, p2, p3, p4, p5, p6, p7))
5515#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5516 GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
5517 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8), \
5518 (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5519#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5520 GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
5521 (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9), \
5522 (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5523
5524#define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args) \
5525 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5526 class full_name : public ::testing::internal::MatcherBaseImpl< \
5527 full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5528 public: \
5529 using full_name::MatcherBaseImpl::MatcherBaseImpl; \
5530 template <typename arg_type> \
5531 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
5532 public: \
5533 explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
5534 : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
5535 bool MatchAndExplain( \
5536 const arg_type& arg, \
5537 ::testing::MatchResultListener* result_listener) const override; \
5538 void DescribeTo(::std::ostream* gmock_os) const override { \
5539 *gmock_os << FormatDescription(false); \
5540 } \
5541 void DescribeNegationTo(::std::ostream* gmock_os) const override { \
5542 *gmock_os << FormatDescription(true); \
5543 } \
5544 GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5545 \
5546 private: \
5547 ::std::string FormatDescription(bool negation) const { \
5548 ::std::string gmock_description; \
5549 gmock_description = (description); \
5550 if (!gmock_description.empty()) { \
5551 return gmock_description; \
5552 } \
5553 return ::testing::internal::FormatMatcherDescription( \
5554 negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)}, \
5555 ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
5556 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5557 GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
5558 } \
5559 }; \
5560 }; \
5561 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5562 inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
5563 GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
5564 return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
5565 GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
5566 } \
5567 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
5568 template <typename arg_type> \
5569 bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \
5570 arg_type>::MatchAndExplain(const arg_type& arg, \
5571 ::testing::MatchResultListener* \
5572 result_listener GTEST_ATTRIBUTE_UNUSED_) \
5573 const
5574
5575#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5576 GMOCK_PP_TAIL( \
5577 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5578#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5579 , typename arg##_type
5580
5581#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5582 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5583#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5584 , arg##_type
5585
5586#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5587 GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
5588 GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5589#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5590 , arg##_type gmock_p##i
5591
5592#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5593 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5594#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5595 , arg(::std::forward<arg##_type>(gmock_p##i))
5596
5597#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5598 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5599#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5600 const arg##_type arg;
5601
5602#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5603 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5604#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5605
5606#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5607 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5608#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
5609 , gmock_p##i
5610
5611// To prevent ADL on certain functions we put them on a separate namespace.
5612using namespace no_adl; // NOLINT
5613
5614} // namespace testing
5615
5616GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
5617
5618// Include any custom callback matchers added by the local installation.
5619// We must include this header at the end to make sure it can use the
5620// declarations from this file.
5621#include "gmock/internal/custom/gmock-matchers.h"
5622
5623#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5624