1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// The Google C++ Testing and Mocking Framework (Google Test)
31//
32// This header file declares functions and macros used internally by
33// Google Test. They are subject to change without notice.
34
35// IWYU pragma: private, include "gtest/gtest.h"
36// IWYU pragma: friend gtest/.*
37// IWYU pragma: friend gmock/.*
38
39#ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
40#define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
41
42#include "gtest/internal/gtest-port.h"
43
44#ifdef GTEST_OS_LINUX
45#include <stdlib.h>
46#include <sys/types.h>
47#include <sys/wait.h>
48#include <unistd.h>
49#endif // GTEST_OS_LINUX
50
51#if GTEST_HAS_EXCEPTIONS
52#include <stdexcept>
53#endif
54
55#include <ctype.h>
56#include <float.h>
57#include <string.h>
58
59#include <cstdint>
60#include <functional>
61#include <iomanip>
62#include <limits>
63#include <map>
64#include <set>
65#include <string>
66#include <type_traits>
67#include <utility>
68#include <vector>
69
70#include "gtest/gtest-message.h"
71#include "gtest/internal/gtest-filepath.h"
72#include "gtest/internal/gtest-string.h"
73#include "gtest/internal/gtest-type-util.h"
74
75// Due to C++ preprocessor weirdness, we need double indirection to
76// concatenate two tokens when one of them is __LINE__. Writing
77//
78// foo ## __LINE__
79//
80// will result in the token foo__LINE__, instead of foo followed by
81// the current line number. For more details, see
82// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
83#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
84#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
85
86// Stringifies its argument.
87// Work around a bug in visual studio which doesn't accept code like this:
88//
89// #define GTEST_STRINGIFY_(name) #name
90// #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
91// MACRO(, x, y)
92//
93// Complaining about the argument to GTEST_STRINGIFY_ being empty.
94// This is allowed by the spec.
95#define GTEST_STRINGIFY_HELPER_(name, ...) #name
96#define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
97
98namespace proto2 {
99class MessageLite;
100}
101
102namespace testing {
103
104// Forward declarations.
105
106class AssertionResult; // Result of an assertion.
107class Message; // Represents a failure message.
108class Test; // Represents a test.
109class TestInfo; // Information about a test.
110class TestPartResult; // Result of a test part.
111class UnitTest; // A collection of test suites.
112
113template <typename T>
114::std::string PrintToString(const T& value);
115
116namespace internal {
117
118struct TraceInfo; // Information about a trace point.
119class TestInfoImpl; // Opaque implementation of TestInfo
120class UnitTestImpl; // Opaque implementation of UnitTest
121
122// The text used in failure messages to indicate the start of the
123// stack trace.
124GTEST_API_ extern const char kStackTraceMarker[];
125
126// An IgnoredValue object can be implicitly constructed from ANY value.
127class IgnoredValue {
128 struct Sink {};
129
130 public:
131 // This constructor template allows any value to be implicitly
132 // converted to IgnoredValue. The object has no data member and
133 // doesn't try to remember anything about the argument. We
134 // deliberately omit the 'explicit' keyword in order to allow the
135 // conversion to be implicit.
136 // Disable the conversion if T already has a magical conversion operator.
137 // Otherwise we get ambiguity.
138 template <typename T,
139 typename std::enable_if<!std::is_convertible<T, Sink>::value,
140 int>::type = 0>
141 IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit)
142};
143
144// Appends the user-supplied message to the Google-Test-generated message.
145GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
146 const Message& user_msg);
147
148#if GTEST_HAS_EXCEPTIONS
149
150GTEST_DISABLE_MSC_WARNINGS_PUSH_(
151 4275 /* an exported class was derived from a class that was not exported */)
152
153// This exception is thrown by (and only by) a failed Google Test
154// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
155// are enabled). We derive it from std::runtime_error, which is for
156// errors presumably detectable only at run time. Since
157// std::runtime_error inherits from std::exception, many testing
158// frameworks know how to extract and print the message inside it.
159class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
160 public:
161 explicit GoogleTestFailureException(const TestPartResult& failure);
162};
163
164GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275
165
166#endif // GTEST_HAS_EXCEPTIONS
167
168namespace edit_distance {
169// Returns the optimal edits to go from 'left' to 'right'.
170// All edits cost the same, with replace having lower priority than
171// add/remove.
172// Simple implementation of the Wagner-Fischer algorithm.
173// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
174enum EditType { kMatch, kAdd, kRemove, kReplace };
175GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
176 const std::vector<size_t>& left, const std::vector<size_t>& right);
177
178// Same as above, but the input is represented as strings.
179GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
180 const std::vector<std::string>& left,
181 const std::vector<std::string>& right);
182
183// Create a diff of the input strings in Unified diff format.
184GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
185 const std::vector<std::string>& right,
186 size_t context = 2);
187
188} // namespace edit_distance
189
190// Constructs and returns the message for an equality assertion
191// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
192//
193// The first four parameters are the expressions used in the assertion
194// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
195// where foo is 5 and bar is 6, we have:
196//
197// expected_expression: "foo"
198// actual_expression: "bar"
199// expected_value: "5"
200// actual_value: "6"
201//
202// The ignoring_case parameter is true if and only if the assertion is a
203// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
204// be inserted into the message.
205GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
206 const char* actual_expression,
207 const std::string& expected_value,
208 const std::string& actual_value,
209 bool ignoring_case);
210
211// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
212GTEST_API_ std::string GetBoolAssertionFailureMessage(
213 const AssertionResult& assertion_result, const char* expression_text,
214 const char* actual_predicate_value, const char* expected_predicate_value);
215
216// This template class represents an IEEE floating-point number
217// (either single-precision or double-precision, depending on the
218// template parameters).
219//
220// The purpose of this class is to do more sophisticated number
221// comparison. (Due to round-off error, etc, it's very unlikely that
222// two floating-points will be equal exactly. Hence a naive
223// comparison by the == operation often doesn't work.)
224//
225// Format of IEEE floating-point:
226//
227// The most-significant bit being the leftmost, an IEEE
228// floating-point looks like
229//
230// sign_bit exponent_bits fraction_bits
231//
232// Here, sign_bit is a single bit that designates the sign of the
233// number.
234//
235// For float, there are 8 exponent bits and 23 fraction bits.
236//
237// For double, there are 11 exponent bits and 52 fraction bits.
238//
239// More details can be found at
240// http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
241//
242// Template parameter:
243//
244// RawType: the raw floating-point type (either float or double)
245template <typename RawType>
246class FloatingPoint {
247 public:
248 // Defines the unsigned integer type that has the same size as the
249 // floating point number.
250 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
251
252 // Constants.
253
254 // # of bits in a number.
255 static const size_t kBitCount = 8 * sizeof(RawType);
256
257 // # of fraction bits in a number.
258 static const size_t kFractionBitCount =
259 std::numeric_limits<RawType>::digits - 1;
260
261 // # of exponent bits in a number.
262 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
263
264 // The mask for the sign bit.
265 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
266
267 // The mask for the fraction bits.
268 static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
269 (kExponentBitCount + 1);
270
271 // The mask for the exponent bits.
272 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
273
274 // How many ULP's (Units in the Last Place) we want to tolerate when
275 // comparing two numbers. The larger the value, the more error we
276 // allow. A 0 value means that two numbers must be exactly the same
277 // to be considered equal.
278 //
279 // The maximum error of a single floating-point operation is 0.5
280 // units in the last place. On Intel CPU's, all floating-point
281 // calculations are done with 80-bit precision, while double has 64
282 // bits. Therefore, 4 should be enough for ordinary use.
283 //
284 // See the following article for more details on ULP:
285 // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
286 static const uint32_t kMaxUlps = 4;
287
288 // Constructs a FloatingPoint from a raw floating-point number.
289 //
290 // On an Intel CPU, passing a non-normalized NAN (Not a Number)
291 // around may change its bits, although the new value is guaranteed
292 // to be also a NAN. Therefore, don't expect this constructor to
293 // preserve the bits in x when x is a NAN.
294 explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
295
296 // Static methods
297
298 // Reinterprets a bit pattern as a floating-point number.
299 //
300 // This function is needed to test the AlmostEquals() method.
301 static RawType ReinterpretBits(const Bits bits) {
302 FloatingPoint fp(0);
303 fp.u_.bits_ = bits;
304 return fp.u_.value_;
305 }
306
307 // Returns the floating-point number that represent positive infinity.
308 static RawType Infinity() { return ReinterpretBits(bits: kExponentBitMask); }
309
310 // Non-static methods
311
312 // Returns the bits that represents this number.
313 const Bits& bits() const { return u_.bits_; }
314
315 // Returns the exponent bits of this number.
316 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
317
318 // Returns the fraction bits of this number.
319 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
320
321 // Returns the sign bit of this number.
322 Bits sign_bit() const { return kSignBitMask & u_.bits_; }
323
324 // Returns true if and only if this is NAN (not a number).
325 bool is_nan() const {
326 // It's a NAN if the exponent bits are all ones and the fraction
327 // bits are not entirely zeros.
328 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
329 }
330
331 // Returns true if and only if this number is at most kMaxUlps ULP's away
332 // from rhs. In particular, this function:
333 //
334 // - returns false if either number is (or both are) NAN.
335 // - treats really large numbers as almost equal to infinity.
336 // - thinks +0.0 and -0.0 are 0 DLP's apart.
337 bool AlmostEquals(const FloatingPoint& rhs) const {
338 // The IEEE standard says that any comparison operation involving
339 // a NAN must return false.
340 if (is_nan() || rhs.is_nan()) return false;
341
342 return DistanceBetweenSignAndMagnitudeNumbers(sam1: u_.bits_, sam2: rhs.u_.bits_) <=
343 kMaxUlps;
344 }
345
346 private:
347 // The data type used to store the actual floating-point number.
348 union FloatingPointUnion {
349 RawType value_; // The raw floating-point number.
350 Bits bits_; // The bits that represent the number.
351 };
352
353 // Converts an integer from the sign-and-magnitude representation to
354 // the biased representation. More precisely, let N be 2 to the
355 // power of (kBitCount - 1), an integer x is represented by the
356 // unsigned number x + N.
357 //
358 // For instance,
359 //
360 // -N + 1 (the most negative number representable using
361 // sign-and-magnitude) is represented by 1;
362 // 0 is represented by N; and
363 // N - 1 (the biggest number representable using
364 // sign-and-magnitude) is represented by 2N - 1.
365 //
366 // Read http://en.wikipedia.org/wiki/Signed_number_representations
367 // for more details on signed number representations.
368 static Bits SignAndMagnitudeToBiased(const Bits& sam) {
369 if (kSignBitMask & sam) {
370 // sam represents a negative number.
371 return ~sam + 1;
372 } else {
373 // sam represents a positive number.
374 return kSignBitMask | sam;
375 }
376 }
377
378 // Given two numbers in the sign-and-magnitude representation,
379 // returns the distance between them as an unsigned number.
380 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
381 const Bits& sam2) {
382 const Bits biased1 = SignAndMagnitudeToBiased(sam: sam1);
383 const Bits biased2 = SignAndMagnitudeToBiased(sam: sam2);
384 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
385 }
386
387 FloatingPointUnion u_;
388};
389
390// Typedefs the instances of the FloatingPoint template class that we
391// care to use.
392typedef FloatingPoint<float> Float;
393typedef FloatingPoint<double> Double;
394
395// In order to catch the mistake of putting tests that use different
396// test fixture classes in the same test suite, we need to assign
397// unique IDs to fixture classes and compare them. The TypeId type is
398// used to hold such IDs. The user should treat TypeId as an opaque
399// type: the only operation allowed on TypeId values is to compare
400// them for equality using the == operator.
401typedef const void* TypeId;
402
403template <typename T>
404class TypeIdHelper {
405 public:
406 // dummy_ must not have a const type. Otherwise an overly eager
407 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
408 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
409 static bool dummy_;
410};
411
412template <typename T>
413bool TypeIdHelper<T>::dummy_ = false;
414
415// GetTypeId<T>() returns the ID of type T. Different values will be
416// returned for different types. Calling the function twice with the
417// same type argument is guaranteed to return the same ID.
418template <typename T>
419TypeId GetTypeId() {
420 // The compiler is required to allocate a different
421 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
422 // the template. Therefore, the address of dummy_ is guaranteed to
423 // be unique.
424 return &(TypeIdHelper<T>::dummy_);
425}
426
427// Returns the type ID of ::testing::Test. Always call this instead
428// of GetTypeId< ::testing::Test>() to get the type ID of
429// ::testing::Test, as the latter may give the wrong result due to a
430// suspected linker bug when compiling Google Test as a Mac OS X
431// framework.
432GTEST_API_ TypeId GetTestTypeId();
433
434// Defines the abstract factory interface that creates instances
435// of a Test object.
436class TestFactoryBase {
437 public:
438 virtual ~TestFactoryBase() = default;
439
440 // Creates a test instance to run. The instance is both created and destroyed
441 // within TestInfoImpl::Run()
442 virtual Test* CreateTest() = 0;
443
444 protected:
445 TestFactoryBase() {}
446
447 private:
448 TestFactoryBase(const TestFactoryBase&) = delete;
449 TestFactoryBase& operator=(const TestFactoryBase&) = delete;
450};
451
452// This class provides implementation of TestFactoryBase interface.
453// It is used in TEST and TEST_F macros.
454template <class TestClass>
455class TestFactoryImpl : public TestFactoryBase {
456 public:
457 Test* CreateTest() override { return new TestClass; }
458};
459
460#ifdef GTEST_OS_WINDOWS
461
462// Predicate-formatters for implementing the HRESULT checking macros
463// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
464// We pass a long instead of HRESULT to avoid causing an
465// include dependency for the HRESULT type.
466GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
467 long hr); // NOLINT
468GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
469 long hr); // NOLINT
470
471#endif // GTEST_OS_WINDOWS
472
473// Types of SetUpTestSuite() and TearDownTestSuite() functions.
474using SetUpTestSuiteFunc = void (*)();
475using TearDownTestSuiteFunc = void (*)();
476
477struct CodeLocation {
478 CodeLocation(const std::string& a_file, int a_line)
479 : file(a_file), line(a_line) {}
480
481 std::string file;
482 int line;
483};
484
485// Helper to identify which setup function for TestCase / TestSuite to call.
486// Only one function is allowed, either TestCase or TestSute but not both.
487
488// Utility functions to help SuiteApiResolver
489using SetUpTearDownSuiteFuncType = void (*)();
490
491inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
492 SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
493 return a == def ? nullptr : a;
494}
495
496template <typename T>
497// Note that SuiteApiResolver inherits from T because
498// SetUpTestSuite()/TearDownTestSuite() could be protected. This way
499// SuiteApiResolver can access them.
500struct SuiteApiResolver : T {
501 // testing::Test is only forward declared at this point. So we make it a
502 // dependent class for the compiler to be OK with it.
503 using Test =
504 typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
505
506 static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
507 int line_num) {
508#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
509 SetUpTearDownSuiteFuncType test_case_fp =
510 GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
511 SetUpTearDownSuiteFuncType test_suite_fp =
512 GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
513
514 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
515 << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
516 "make sure there is only one present at "
517 << filename << ":" << line_num;
518
519 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
520#else
521 (void)(filename);
522 (void)(line_num);
523 return &T::SetUpTestSuite;
524#endif
525 }
526
527 static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
528 int line_num) {
529#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
530 SetUpTearDownSuiteFuncType test_case_fp =
531 GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
532 SetUpTearDownSuiteFuncType test_suite_fp =
533 GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
534
535 GTEST_CHECK_(!test_case_fp || !test_suite_fp)
536 << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
537 " please make sure there is only one present at"
538 << filename << ":" << line_num;
539
540 return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
541#else
542 (void)(filename);
543 (void)(line_num);
544 return &T::TearDownTestSuite;
545#endif
546 }
547};
548
549// Creates a new TestInfo object and registers it with Google Test;
550// returns the created object.
551//
552// Arguments:
553//
554// test_suite_name: name of the test suite
555// name: name of the test
556// type_param: the name of the test's type parameter, or NULL if
557// this is not a typed or a type-parameterized test.
558// value_param: text representation of the test's value parameter,
559// or NULL if this is not a type-parameterized test.
560// code_location: code location where the test is defined
561// fixture_class_id: ID of the test fixture class
562// set_up_tc: pointer to the function that sets up the test suite
563// tear_down_tc: pointer to the function that tears down the test suite
564// factory: pointer to the factory that creates a test object.
565// The newly created TestInfo instance will assume
566// ownership of the factory object.
567GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
568 const char* test_suite_name, const char* name, const char* type_param,
569 const char* value_param, CodeLocation code_location,
570 TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
571 TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
572
573// If *pstr starts with the given prefix, modifies *pstr to be right
574// past the prefix and returns true; otherwise leaves *pstr unchanged
575// and returns false. None of pstr, *pstr, and prefix can be NULL.
576GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
577
578GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
579/* class A needs to have dll-interface to be used by clients of class B */)
580
581// State of the definition of a type-parameterized test suite.
582class GTEST_API_ TypedTestSuitePState {
583 public:
584 TypedTestSuitePState() : registered_(false) {}
585
586 // Adds the given test name to defined_test_names_ and return true
587 // if the test suite hasn't been registered; otherwise aborts the
588 // program.
589 bool AddTestName(const char* file, int line, const char* case_name,
590 const char* test_name) {
591 if (registered_) {
592 fprintf(stderr,
593 format: "%s Test %s must be defined before "
594 "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
595 FormatFileLocation(file, line).c_str(), test_name, case_name);
596 fflush(stderr);
597 posix::Abort();
598 }
599 registered_tests_.insert(
600 x: ::std::make_pair(x&: test_name, y: CodeLocation(file, line)));
601 return true;
602 }
603
604 bool TestExists(const std::string& test_name) const {
605 return registered_tests_.count(x: test_name) > 0;
606 }
607
608 const CodeLocation& GetCodeLocation(const std::string& test_name) const {
609 RegisteredTestsMap::const_iterator it = registered_tests_.find(x: test_name);
610 GTEST_CHECK_(it != registered_tests_.end());
611 return it->second;
612 }
613
614 // Verifies that registered_tests match the test names in
615 // defined_test_names_; returns registered_tests if successful, or
616 // aborts the program otherwise.
617 const char* VerifyRegisteredTestNames(const char* test_suite_name,
618 const char* file, int line,
619 const char* registered_tests);
620
621 private:
622 typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap;
623
624 bool registered_;
625 RegisteredTestsMap registered_tests_;
626};
627
628// Legacy API is deprecated but still available
629#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
630using TypedTestCasePState = TypedTestSuitePState;
631#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
632
633GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
634
635// Skips to the first non-space char after the first comma in 'str';
636// returns NULL if no comma is found in 'str'.
637inline const char* SkipComma(const char* str) {
638 const char* comma = strchr(s: str, c: ',');
639 if (comma == nullptr) {
640 return nullptr;
641 }
642 while (IsSpace(ch: *(++comma))) {
643 }
644 return comma;
645}
646
647// Returns the prefix of 'str' before the first comma in it; returns
648// the entire string if it contains no comma.
649inline std::string GetPrefixUntilComma(const char* str) {
650 const char* comma = strchr(s: str, c: ',');
651 return comma == nullptr ? str : std::string(str, comma);
652}
653
654// Splits a given string on a given delimiter, populating a given
655// vector with the fields.
656void SplitString(const ::std::string& str, char delimiter,
657 ::std::vector<::std::string>* dest);
658
659// The default argument to the template below for the case when the user does
660// not provide a name generator.
661struct DefaultNameGenerator {
662 template <typename T>
663 static std::string GetName(int i) {
664 return StreamableToString(streamable: i);
665 }
666};
667
668template <typename Provided = DefaultNameGenerator>
669struct NameGeneratorSelector {
670 typedef Provided type;
671};
672
673template <typename NameGenerator>
674void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
675
676template <typename NameGenerator, typename Types>
677void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
678 result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
679 GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
680 i + 1);
681}
682
683template <typename NameGenerator, typename Types>
684std::vector<std::string> GenerateNames() {
685 std::vector<std::string> result;
686 GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
687 return result;
688}
689
690// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
691// registers a list of type-parameterized tests with Google Test. The
692// return value is insignificant - we just need to return something
693// such that we can call this function in a namespace scope.
694//
695// Implementation note: The GTEST_TEMPLATE_ macro declares a template
696// template parameter. It's defined in gtest-type-util.h.
697template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
698class TypeParameterizedTest {
699 public:
700 // 'index' is the index of the test in the type list 'Types'
701 // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
702 // Types). Valid values for 'index' are [0, N - 1] where N is the
703 // length of Types.
704 static bool Register(const char* prefix, const CodeLocation& code_location,
705 const char* case_name, const char* test_names, int index,
706 const std::vector<std::string>& type_names =
707 GenerateNames<DefaultNameGenerator, Types>()) {
708 typedef typename Types::Head Type;
709 typedef Fixture<Type> FixtureClass;
710 typedef typename GTEST_BIND_(TestSel, Type) TestClass;
711
712 // First, registers the first type-parameterized test in the type
713 // list.
714 MakeAndRegisterTestInfo(
715 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
716 "/" + type_names[static_cast<size_t>(index)])
717 .c_str(),
718 StripTrailingSpaces(str: GetPrefixUntilComma(str: test_names)).c_str(),
719 GetTypeName<Type>().c_str(),
720 nullptr, // No value parameter.
721 code_location, GetTypeId<FixtureClass>(),
722 SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
723 code_location.file.c_str(), code_location.line),
724 SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
725 code_location.file.c_str(), code_location.line),
726 new TestFactoryImpl<TestClass>);
727
728 // Next, recurses (at compile time) with the tail of the type list.
729 return TypeParameterizedTest<Fixture, TestSel,
730 typename Types::Tail>::Register(prefix,
731 code_location,
732 case_name,
733 test_names,
734 index + 1,
735 type_names);
736 }
737};
738
739// The base case for the compile time recursion.
740template <GTEST_TEMPLATE_ Fixture, class TestSel>
741class TypeParameterizedTest<Fixture, TestSel, internal::None> {
742 public:
743 static bool Register(const char* /*prefix*/, const CodeLocation&,
744 const char* /*case_name*/, const char* /*test_names*/,
745 int /*index*/,
746 const std::vector<std::string>& =
747 std::vector<std::string>() /*type_names*/) {
748 return true;
749 }
750};
751
752GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
753 CodeLocation code_location);
754GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
755 const char* case_name);
756
757// TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
758// registers *all combinations* of 'Tests' and 'Types' with Google
759// Test. The return value is insignificant - we just need to return
760// something such that we can call this function in a namespace scope.
761template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
762class TypeParameterizedTestSuite {
763 public:
764 static bool Register(const char* prefix, CodeLocation code_location,
765 const TypedTestSuitePState* state, const char* case_name,
766 const char* test_names,
767 const std::vector<std::string>& type_names =
768 GenerateNames<DefaultNameGenerator, Types>()) {
769 RegisterTypeParameterizedTestSuiteInstantiation(case_name);
770 std::string test_name =
771 StripTrailingSpaces(str: GetPrefixUntilComma(str: test_names));
772 if (!state->TestExists(test_name)) {
773 fprintf(stderr, format: "Failed to get code location for test %s.%s at %s.",
774 case_name, test_name.c_str(),
775 FormatFileLocation(file: code_location.file.c_str(), line: code_location.line)
776 .c_str());
777 fflush(stderr);
778 posix::Abort();
779 }
780 const CodeLocation& test_location = state->GetCodeLocation(test_name);
781
782 typedef typename Tests::Head Head;
783
784 // First, register the first test in 'Test' for each type in 'Types'.
785 TypeParameterizedTest<Fixture, Head, Types>::Register(
786 prefix, test_location, case_name, test_names, 0, type_names);
787
788 // Next, recurses (at compile time) with the tail of the test list.
789 return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
790 Types>::Register(prefix, code_location,
791 state, case_name,
792 SkipComma(str: test_names),
793 type_names);
794 }
795};
796
797// The base case for the compile time recursion.
798template <GTEST_TEMPLATE_ Fixture, typename Types>
799class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
800 public:
801 static bool Register(const char* /*prefix*/, const CodeLocation&,
802 const TypedTestSuitePState* /*state*/,
803 const char* /*case_name*/, const char* /*test_names*/,
804 const std::vector<std::string>& =
805 std::vector<std::string>() /*type_names*/) {
806 return true;
807 }
808};
809
810// Returns the current OS stack trace as an std::string.
811//
812// The maximum number of stack frames to be included is specified by
813// the gtest_stack_trace_depth flag. The skip_count parameter
814// specifies the number of top frames to be skipped, which doesn't
815// count against the number of frames to be included.
816//
817// For example, if Foo() calls Bar(), which in turn calls
818// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
819// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
820GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count);
821
822// Helpers for suppressing warnings on unreachable code or constant
823// condition.
824
825// Always returns true.
826GTEST_API_ bool AlwaysTrue();
827
828// Always returns false.
829inline bool AlwaysFalse() { return !AlwaysTrue(); }
830
831// Helper for suppressing false warning from Clang on a const char*
832// variable declared in a conditional expression always being NULL in
833// the else branch.
834struct GTEST_API_ ConstCharPtr {
835 ConstCharPtr(const char* str) : value(str) {}
836 operator bool() const { return true; }
837 const char* value;
838};
839
840// Helper for declaring std::string within 'if' statement
841// in pre C++17 build environment.
842struct TrueWithString {
843 TrueWithString() = default;
844 explicit TrueWithString(const char* str) : value(str) {}
845 explicit TrueWithString(const std::string& str) : value(str) {}
846 explicit operator bool() const { return true; }
847 std::string value;
848};
849
850// A simple Linear Congruential Generator for generating random
851// numbers with a uniform distribution. Unlike rand() and srand(), it
852// doesn't use global state (and therefore can't interfere with user
853// code). Unlike rand_r(), it's portable. An LCG isn't very random,
854// but it's good enough for our purposes.
855class GTEST_API_ Random {
856 public:
857 static const uint32_t kMaxRange = 1u << 31;
858
859 explicit Random(uint32_t seed) : state_(seed) {}
860
861 void Reseed(uint32_t seed) { state_ = seed; }
862
863 // Generates a random number from [0, range). Crashes if 'range' is
864 // 0 or greater than kMaxRange.
865 uint32_t Generate(uint32_t range);
866
867 private:
868 uint32_t state_;
869 Random(const Random&) = delete;
870 Random& operator=(const Random&) = delete;
871};
872
873// Turns const U&, U&, const U, and U all into U.
874#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
875 typename std::remove_const<typename std::remove_reference<T>::type>::type
876
877// HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
878// that's true if and only if T has methods DebugString() and ShortDebugString()
879// that return std::string.
880template <typename T>
881class HasDebugStringAndShortDebugString {
882 private:
883 template <typename C>
884 static auto CheckDebugString(C*) -> typename std::is_same<
885 std::string, decltype(std::declval<const C>().DebugString())>::type;
886 template <typename>
887 static std::false_type CheckDebugString(...);
888
889 template <typename C>
890 static auto CheckShortDebugString(C*) -> typename std::is_same<
891 std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
892 template <typename>
893 static std::false_type CheckShortDebugString(...);
894
895 using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
896 using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
897
898 public:
899 static constexpr bool value =
900 HasDebugStringType::value && HasShortDebugStringType::value;
901};
902
903#ifdef GTEST_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
904template <typename T>
905constexpr bool HasDebugStringAndShortDebugString<T>::value;
906#endif
907
908// When the compiler sees expression IsContainerTest<C>(0), if C is an
909// STL-style container class, the first overload of IsContainerTest
910// will be viable (since both C::iterator* and C::const_iterator* are
911// valid types and NULL can be implicitly converted to them). It will
912// be picked over the second overload as 'int' is a perfect match for
913// the type of argument 0. If C::iterator or C::const_iterator is not
914// a valid type, the first overload is not viable, and the second
915// overload will be picked. Therefore, we can determine whether C is
916// a container class by checking the type of IsContainerTest<C>(0).
917// The value of the expression is insignificant.
918//
919// In C++11 mode we check the existence of a const_iterator and that an
920// iterator is properly implemented for the container.
921//
922// For pre-C++11 that we look for both C::iterator and C::const_iterator.
923// The reason is that C++ injects the name of a class as a member of the
924// class itself (e.g. you can refer to class iterator as either
925// 'iterator' or 'iterator::iterator'). If we look for C::iterator
926// only, for example, we would mistakenly think that a class named
927// iterator is an STL container.
928//
929// Also note that the simpler approach of overloading
930// IsContainerTest(typename C::const_iterator*) and
931// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
932typedef int IsContainer;
933template <class C,
934 class Iterator = decltype(::std::declval<const C&>().begin()),
935 class = decltype(::std::declval<const C&>().end()),
936 class = decltype(++::std::declval<Iterator&>()),
937 class = decltype(*::std::declval<Iterator>()),
938 class = typename C::const_iterator>
939IsContainer IsContainerTest(int /* dummy */) {
940 return 0;
941}
942
943typedef char IsNotContainer;
944template <class C>
945IsNotContainer IsContainerTest(long /* dummy */) {
946 return '\0';
947}
948
949// Trait to detect whether a type T is a hash table.
950// The heuristic used is that the type contains an inner type `hasher` and does
951// not contain an inner type `reverse_iterator`.
952// If the container is iterable in reverse, then order might actually matter.
953template <typename T>
954struct IsHashTable {
955 private:
956 template <typename U>
957 static char test(typename U::hasher*, typename U::reverse_iterator*);
958 template <typename U>
959 static int test(typename U::hasher*, ...);
960 template <typename U>
961 static char test(...);
962
963 public:
964 static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
965};
966
967template <typename T>
968const bool IsHashTable<T>::value;
969
970template <typename C,
971 bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
972struct IsRecursiveContainerImpl;
973
974template <typename C>
975struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
976
977// Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
978// obey the same inconsistencies as the IsContainerTest, namely check if
979// something is a container is relying on only const_iterator in C++11 and
980// is relying on both const_iterator and iterator otherwise
981template <typename C>
982struct IsRecursiveContainerImpl<C, true> {
983 using value_type = decltype(*std::declval<typename C::const_iterator>());
984 using type =
985 std::is_same<typename std::remove_const<
986 typename std::remove_reference<value_type>::type>::type,
987 C>;
988};
989
990// IsRecursiveContainer<Type> is a unary compile-time predicate that
991// evaluates whether C is a recursive container type. A recursive container
992// type is a container type whose value_type is equal to the container type
993// itself. An example for a recursive container type is
994// boost::filesystem::path, whose iterator has a value_type that is equal to
995// boost::filesystem::path.
996template <typename C>
997struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
998
999// Utilities for native arrays.
1000
1001// ArrayEq() compares two k-dimensional native arrays using the
1002// elements' operator==, where k can be any integer >= 0. When k is
1003// 0, ArrayEq() degenerates into comparing a single pair of values.
1004
1005template <typename T, typename U>
1006bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1007
1008// This generic version is used when k is 0.
1009template <typename T, typename U>
1010inline bool ArrayEq(const T& lhs, const U& rhs) {
1011 return lhs == rhs;
1012}
1013
1014// This overload is used when k >= 1.
1015template <typename T, typename U, size_t N>
1016inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
1017 return internal::ArrayEq(lhs, N, rhs);
1018}
1019
1020// This helper reduces code bloat. If we instead put its logic inside
1021// the previous ArrayEq() function, arrays with different sizes would
1022// lead to different copies of the template code.
1023template <typename T, typename U>
1024bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1025 for (size_t i = 0; i != size; i++) {
1026 if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
1027 }
1028 return true;
1029}
1030
1031// Finds the first element in the iterator range [begin, end) that
1032// equals elem. Element may be a native array type itself.
1033template <typename Iter, typename Element>
1034Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1035 for (Iter it = begin; it != end; ++it) {
1036 if (internal::ArrayEq(*it, elem)) return it;
1037 }
1038 return end;
1039}
1040
1041// CopyArray() copies a k-dimensional native array using the elements'
1042// operator=, where k can be any integer >= 0. When k is 0,
1043// CopyArray() degenerates into copying a single value.
1044
1045template <typename T, typename U>
1046void CopyArray(const T* from, size_t size, U* to);
1047
1048// This generic version is used when k is 0.
1049template <typename T, typename U>
1050inline void CopyArray(const T& from, U* to) {
1051 *to = from;
1052}
1053
1054// This overload is used when k >= 1.
1055template <typename T, typename U, size_t N>
1056inline void CopyArray(const T (&from)[N], U (*to)[N]) {
1057 internal::CopyArray(from, N, *to);
1058}
1059
1060// This helper reduces code bloat. If we instead put its logic inside
1061// the previous CopyArray() function, arrays with different sizes
1062// would lead to different copies of the template code.
1063template <typename T, typename U>
1064void CopyArray(const T* from, size_t size, U* to) {
1065 for (size_t i = 0; i != size; i++) {
1066 internal::CopyArray(from[i], to + i);
1067 }
1068}
1069
1070// The relation between an NativeArray object (see below) and the
1071// native array it represents.
1072// We use 2 different structs to allow non-copyable types to be used, as long
1073// as RelationToSourceReference() is passed.
1074struct RelationToSourceReference {};
1075struct RelationToSourceCopy {};
1076
1077// Adapts a native array to a read-only STL-style container. Instead
1078// of the complete STL container concept, this adaptor only implements
1079// members useful for Google Mock's container matchers. New members
1080// should be added as needed. To simplify the implementation, we only
1081// support Element being a raw type (i.e. having no top-level const or
1082// reference modifier). It's the client's responsibility to satisfy
1083// this requirement. Element can be an array type itself (hence
1084// multi-dimensional arrays are supported).
1085template <typename Element>
1086class NativeArray {
1087 public:
1088 // STL-style container typedefs.
1089 typedef Element value_type;
1090 typedef Element* iterator;
1091 typedef const Element* const_iterator;
1092
1093 // Constructs from a native array. References the source.
1094 NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1095 InitRef(array, a_size: count);
1096 }
1097
1098 // Constructs from a native array. Copies the source.
1099 NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1100 InitCopy(array, a_size: count);
1101 }
1102
1103 // Copy constructor.
1104 NativeArray(const NativeArray& rhs) {
1105 (this->*rhs.clone_)(rhs.array_, rhs.size_);
1106 }
1107
1108 ~NativeArray() {
1109 if (clone_ != &NativeArray::InitRef) delete[] array_;
1110 }
1111
1112 // STL-style container methods.
1113 size_t size() const { return size_; }
1114 const_iterator begin() const { return array_; }
1115 const_iterator end() const { return array_ + size_; }
1116 bool operator==(const NativeArray& rhs) const {
1117 return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
1118 }
1119
1120 private:
1121 static_assert(!std::is_const<Element>::value, "Type must not be const");
1122 static_assert(!std::is_reference<Element>::value,
1123 "Type must not be a reference");
1124
1125 // Initializes this object with a copy of the input.
1126 void InitCopy(const Element* array, size_t a_size) {
1127 Element* const copy = new Element[a_size];
1128 CopyArray(array, a_size, copy);
1129 array_ = copy;
1130 size_ = a_size;
1131 clone_ = &NativeArray::InitCopy;
1132 }
1133
1134 // Initializes this object with a reference of the input.
1135 void InitRef(const Element* array, size_t a_size) {
1136 array_ = array;
1137 size_ = a_size;
1138 clone_ = &NativeArray::InitRef;
1139 }
1140
1141 const Element* array_;
1142 size_t size_;
1143 void (NativeArray::*clone_)(const Element*, size_t);
1144};
1145
1146// Backport of std::index_sequence.
1147template <size_t... Is>
1148struct IndexSequence {
1149 using type = IndexSequence;
1150};
1151
1152// Double the IndexSequence, and one if plus_one is true.
1153template <bool plus_one, typename T, size_t sizeofT>
1154struct DoubleSequence;
1155template <size_t... I, size_t sizeofT>
1156struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1157 using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1158};
1159template <size_t... I, size_t sizeofT>
1160struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1161 using type = IndexSequence<I..., (sizeofT + I)...>;
1162};
1163
1164// Backport of std::make_index_sequence.
1165// It uses O(ln(N)) instantiation depth.
1166template <size_t N>
1167struct MakeIndexSequenceImpl
1168 : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1169 N / 2>::type {};
1170
1171template <>
1172struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1173
1174template <size_t N>
1175using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1176
1177template <typename... T>
1178using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1179
1180template <size_t>
1181struct Ignore {
1182 Ignore(...); // NOLINT
1183};
1184
1185template <typename>
1186struct ElemFromListImpl;
1187template <size_t... I>
1188struct ElemFromListImpl<IndexSequence<I...>> {
1189 // We make Ignore a template to solve a problem with MSVC.
1190 // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1191 // MSVC doesn't understand how to deal with that pack expansion.
1192 // Use `0 * I` to have a single instantiation of Ignore.
1193 template <typename R>
1194 static R Apply(Ignore<0 * I>..., R (*)(), ...);
1195};
1196
1197template <size_t N, typename... T>
1198struct ElemFromList {
1199 using type =
1200 decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1201 static_cast<T (*)()>(nullptr)...));
1202};
1203
1204struct FlatTupleConstructTag {};
1205
1206template <typename... T>
1207class FlatTuple;
1208
1209template <typename Derived, size_t I>
1210struct FlatTupleElemBase;
1211
1212template <typename... T, size_t I>
1213struct FlatTupleElemBase<FlatTuple<T...>, I> {
1214 using value_type = typename ElemFromList<I, T...>::type;
1215 FlatTupleElemBase() = default;
1216 template <typename Arg>
1217 explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1218 : value(std::forward<Arg>(t)) {}
1219 value_type value;
1220};
1221
1222template <typename Derived, typename Idx>
1223struct FlatTupleBase;
1224
1225template <size_t... Idx, typename... T>
1226struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1227 : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1228 using Indices = IndexSequence<Idx...>;
1229 FlatTupleBase() = default;
1230 template <typename... Args>
1231 explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1232 : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1233 std::forward<Args>(args))... {}
1234
1235 template <size_t I>
1236 const typename ElemFromList<I, T...>::type& Get() const {
1237 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1238 }
1239
1240 template <size_t I>
1241 typename ElemFromList<I, T...>::type& Get() {
1242 return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1243 }
1244
1245 template <typename F>
1246 auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1247 return std::forward<F>(f)(Get<Idx>()...);
1248 }
1249
1250 template <typename F>
1251 auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1252 return std::forward<F>(f)(Get<Idx>()...);
1253 }
1254};
1255
1256// Analog to std::tuple but with different tradeoffs.
1257// This class minimizes the template instantiation depth, thus allowing more
1258// elements than std::tuple would. std::tuple has been seen to require an
1259// instantiation depth of more than 10x the number of elements in some
1260// implementations.
1261// FlatTuple and ElemFromList are not recursive and have a fixed depth
1262// regardless of T...
1263// MakeIndexSequence, on the other hand, it is recursive but with an
1264// instantiation depth of O(ln(N)).
1265template <typename... T>
1266class FlatTuple
1267 : private FlatTupleBase<FlatTuple<T...>,
1268 typename MakeIndexSequence<sizeof...(T)>::type> {
1269 using Indices = typename FlatTupleBase<
1270 FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1271
1272 public:
1273 FlatTuple() = default;
1274 template <typename... Args>
1275 explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1276 : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1277
1278 using FlatTuple::FlatTupleBase::Apply;
1279 using FlatTuple::FlatTupleBase::Get;
1280};
1281
1282// Utility functions to be called with static_assert to induce deprecation
1283// warnings.
1284GTEST_INTERNAL_DEPRECATED(
1285 "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1286 "INSTANTIATE_TEST_SUITE_P")
1287constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1288
1289GTEST_INTERNAL_DEPRECATED(
1290 "TYPED_TEST_CASE_P is deprecated, please use "
1291 "TYPED_TEST_SUITE_P")
1292constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1293
1294GTEST_INTERNAL_DEPRECATED(
1295 "TYPED_TEST_CASE is deprecated, please use "
1296 "TYPED_TEST_SUITE")
1297constexpr bool TypedTestCaseIsDeprecated() { return true; }
1298
1299GTEST_INTERNAL_DEPRECATED(
1300 "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1301 "REGISTER_TYPED_TEST_SUITE_P")
1302constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1303
1304GTEST_INTERNAL_DEPRECATED(
1305 "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1306 "INSTANTIATE_TYPED_TEST_SUITE_P")
1307constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1308
1309} // namespace internal
1310} // namespace testing
1311
1312namespace std {
1313// Some standard library implementations use `struct tuple_size` and some use
1314// `class tuple_size`. Clang warns about the mismatch.
1315// https://reviews.llvm.org/D55466
1316#ifdef __clang__
1317#pragma clang diagnostic push
1318#pragma clang diagnostic ignored "-Wmismatched-tags"
1319#endif
1320template <typename... Ts>
1321struct tuple_size<testing::internal::FlatTuple<Ts...>>
1322 : std::integral_constant<size_t, sizeof...(Ts)> {};
1323#ifdef __clang__
1324#pragma clang diagnostic pop
1325#endif
1326} // namespace std
1327
1328#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1329 ::testing::internal::AssertHelper(result_type, file, line, message) = \
1330 ::testing::Message()
1331
1332#define GTEST_MESSAGE_(message, result_type) \
1333 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1334
1335#define GTEST_FATAL_FAILURE_(message) \
1336 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1337
1338#define GTEST_NONFATAL_FAILURE_(message) \
1339 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1340
1341#define GTEST_SUCCESS_(message) \
1342 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1343
1344#define GTEST_SKIP_(message) \
1345 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1346
1347// Suppress MSVC warning 4072 (unreachable code) for the code following
1348// statement if it returns or throws (or doesn't return or throw in some
1349// situations).
1350// NOTE: The "else" is important to keep this expansion to prevent a top-level
1351// "else" from attaching to our "if".
1352#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1353 if (::testing::internal::AlwaysTrue()) { \
1354 statement; \
1355 } else /* NOLINT */ \
1356 static_assert(true, "") // User must have a semicolon after expansion.
1357
1358#if GTEST_HAS_EXCEPTIONS
1359
1360namespace testing {
1361namespace internal {
1362
1363class NeverThrown {
1364 public:
1365 const char* what() const noexcept {
1366 return "this exception should never be thrown";
1367 }
1368};
1369
1370} // namespace internal
1371} // namespace testing
1372
1373#if GTEST_HAS_RTTI
1374
1375#define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1376
1377#else // GTEST_HAS_RTTI
1378
1379#define GTEST_EXCEPTION_TYPE_(e) \
1380 std::string { "an std::exception-derived error" }
1381
1382#endif // GTEST_HAS_RTTI
1383
1384#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1385 catch (typename std::conditional< \
1386 std::is_same<typename std::remove_cv<typename std::remove_reference< \
1387 expected_exception>::type>::type, \
1388 std::exception>::value, \
1389 const ::testing::internal::NeverThrown&, const std::exception&>::type \
1390 e) { \
1391 gtest_msg.value = "Expected: " #statement \
1392 " throws an exception of type " #expected_exception \
1393 ".\n Actual: it throws "; \
1394 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1395 gtest_msg.value += " with description \""; \
1396 gtest_msg.value += e.what(); \
1397 gtest_msg.value += "\"."; \
1398 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1399 }
1400
1401#else // GTEST_HAS_EXCEPTIONS
1402
1403#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1404
1405#endif // GTEST_HAS_EXCEPTIONS
1406
1407#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1408 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1409 if (::testing::internal::TrueWithString gtest_msg{}) { \
1410 bool gtest_caught_expected = false; \
1411 try { \
1412 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1413 } catch (expected_exception const&) { \
1414 gtest_caught_expected = true; \
1415 } \
1416 GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \
1417 catch (...) { \
1418 gtest_msg.value = "Expected: " #statement \
1419 " throws an exception of type " #expected_exception \
1420 ".\n Actual: it throws a different type."; \
1421 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1422 } \
1423 if (!gtest_caught_expected) { \
1424 gtest_msg.value = "Expected: " #statement \
1425 " throws an exception of type " #expected_exception \
1426 ".\n Actual: it throws nothing."; \
1427 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1428 } \
1429 } else /*NOLINT*/ \
1430 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \
1431 : fail(gtest_msg.value.c_str())
1432
1433#if GTEST_HAS_EXCEPTIONS
1434
1435#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1436 catch (std::exception const& e) { \
1437 gtest_msg.value = "it throws "; \
1438 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \
1439 gtest_msg.value += " with description \""; \
1440 gtest_msg.value += e.what(); \
1441 gtest_msg.value += "\"."; \
1442 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1443 }
1444
1445#else // GTEST_HAS_EXCEPTIONS
1446
1447#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1448
1449#endif // GTEST_HAS_EXCEPTIONS
1450
1451#define GTEST_TEST_NO_THROW_(statement, fail) \
1452 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1453 if (::testing::internal::TrueWithString gtest_msg{}) { \
1454 try { \
1455 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1456 } \
1457 GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
1458 catch (...) { \
1459 gtest_msg.value = "it throws."; \
1460 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1461 } \
1462 } else \
1463 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__) \
1464 : fail(("Expected: " #statement " doesn't throw an exception.\n" \
1465 " Actual: " + \
1466 gtest_msg.value) \
1467 .c_str())
1468
1469#define GTEST_TEST_ANY_THROW_(statement, fail) \
1470 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1471 if (::testing::internal::AlwaysTrue()) { \
1472 bool gtest_caught_any = false; \
1473 try { \
1474 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1475 } catch (...) { \
1476 gtest_caught_any = true; \
1477 } \
1478 if (!gtest_caught_any) { \
1479 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1480 } \
1481 } else \
1482 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__) \
1483 : fail("Expected: " #statement \
1484 " throws an exception.\n" \
1485 " Actual: it doesn't.")
1486
1487// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1488// either a boolean expression or an AssertionResult. text is a textual
1489// representation of expression as it was passed into the EXPECT_TRUE.
1490#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1491 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1492 if (const ::testing::AssertionResult gtest_ar_ = \
1493 ::testing::AssertionResult(expression)) \
1494 ; \
1495 else \
1496 fail(::testing::internal::GetBoolAssertionFailureMessage( \
1497 gtest_ar_, text, #actual, #expected) \
1498 .c_str())
1499
1500#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1501 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1502 if (::testing::internal::AlwaysTrue()) { \
1503 const ::testing::internal::HasNewFatalFailureHelper \
1504 gtest_fatal_failure_checker; \
1505 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1506 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1507 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1508 } \
1509 } else /* NOLINT */ \
1510 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__) \
1511 : fail("Expected: " #statement \
1512 " doesn't generate new fatal " \
1513 "failures in the current thread.\n" \
1514 " Actual: it does.")
1515
1516// Expands to the name of the class that implements the given test.
1517#define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1518 test_suite_name##_##test_name##_Test
1519
1520// Helper macro for defining tests.
1521#define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \
1522 static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \
1523 "test_suite_name must not be empty"); \
1524 static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \
1525 "test_name must not be empty"); \
1526 class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1527 : public parent_class { \
1528 public: \
1529 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \
1530 ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
1531 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1532 (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete; \
1533 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
1534 const GTEST_TEST_CLASS_NAME_(test_suite_name, \
1535 test_name) &) = delete; /* NOLINT */ \
1536 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1537 (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
1538 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \
1539 GTEST_TEST_CLASS_NAME_(test_suite_name, \
1540 test_name) &&) noexcept = delete; /* NOLINT */ \
1541 \
1542 private: \
1543 void TestBody() override; \
1544 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \
1545 }; \
1546 \
1547 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \
1548 test_name)::test_info_ = \
1549 ::testing::internal::MakeAndRegisterTestInfo( \
1550 #test_suite_name, #test_name, nullptr, nullptr, \
1551 ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
1552 ::testing::internal::SuiteApiResolver< \
1553 parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \
1554 ::testing::internal::SuiteApiResolver< \
1555 parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \
1556 new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \
1557 test_suite_name, test_name)>); \
1558 void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1559
1560#endif // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1561