1 | /* |
2 | * copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at> |
3 | * |
4 | * This file is part of FFmpeg. |
5 | * |
6 | * FFmpeg is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU Lesser General Public |
8 | * License as published by the Free Software Foundation; either |
9 | * version 2.1 of the License, or (at your option) any later version. |
10 | * |
11 | * FFmpeg is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | * Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public |
17 | * License along with FFmpeg; if not, write to the Free Software |
18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
19 | */ |
20 | |
21 | /** |
22 | * @file |
23 | * @addtogroup lavu_math |
24 | * Mathematical utilities for working with timestamp and time base. |
25 | */ |
26 | |
27 | #ifndef AVUTIL_MATHEMATICS_H |
28 | #define AVUTIL_MATHEMATICS_H |
29 | |
30 | #include <stdint.h> |
31 | #include <math.h> |
32 | #include "attributes.h" |
33 | #include "rational.h" |
34 | #include "intfloat.h" |
35 | |
36 | #ifndef M_E |
37 | #define M_E 2.7182818284590452354 /* e */ |
38 | #endif |
39 | #ifndef M_Ef |
40 | #define M_Ef 2.7182818284590452354f /* e */ |
41 | #endif |
42 | #ifndef M_LN2 |
43 | #define M_LN2 0.69314718055994530942 /* log_e 2 */ |
44 | #endif |
45 | #ifndef M_LN2f |
46 | #define M_LN2f 0.69314718055994530942f /* log_e 2 */ |
47 | #endif |
48 | #ifndef M_LN10 |
49 | #define M_LN10 2.30258509299404568402 /* log_e 10 */ |
50 | #endif |
51 | #ifndef M_LN10f |
52 | #define M_LN10f 2.30258509299404568402f /* log_e 10 */ |
53 | #endif |
54 | #ifndef M_LOG2_10 |
55 | #define M_LOG2_10 3.32192809488736234787 /* log_2 10 */ |
56 | #endif |
57 | #ifndef M_LOG2_10f |
58 | #define M_LOG2_10f 3.32192809488736234787f /* log_2 10 */ |
59 | #endif |
60 | #ifndef M_PHI |
61 | #define M_PHI 1.61803398874989484820 /* phi / golden ratio */ |
62 | #endif |
63 | #ifndef M_PHIf |
64 | #define M_PHIf 1.61803398874989484820f /* phi / golden ratio */ |
65 | #endif |
66 | #ifndef M_PI |
67 | #define M_PI 3.14159265358979323846 /* pi */ |
68 | #endif |
69 | #ifndef M_PIf |
70 | #define M_PIf 3.14159265358979323846f /* pi */ |
71 | #endif |
72 | #ifndef M_PI_2 |
73 | #define M_PI_2 1.57079632679489661923 /* pi/2 */ |
74 | #endif |
75 | #ifndef M_PI_2f |
76 | #define M_PI_2f 1.57079632679489661923f /* pi/2 */ |
77 | #endif |
78 | #ifndef M_PI_4 |
79 | #define M_PI_4 0.78539816339744830962 /* pi/4 */ |
80 | #endif |
81 | #ifndef M_PI_4f |
82 | #define M_PI_4f 0.78539816339744830962f /* pi/4 */ |
83 | #endif |
84 | #ifndef M_1_PI |
85 | #define M_1_PI 0.31830988618379067154 /* 1/pi */ |
86 | #endif |
87 | #ifndef M_1_PIf |
88 | #define M_1_PIf 0.31830988618379067154f /* 1/pi */ |
89 | #endif |
90 | #ifndef M_2_PI |
91 | #define M_2_PI 0.63661977236758134308 /* 2/pi */ |
92 | #endif |
93 | #ifndef M_2_PIf |
94 | #define M_2_PIf 0.63661977236758134308f /* 2/pi */ |
95 | #endif |
96 | #ifndef M_2_SQRTPI |
97 | #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */ |
98 | #endif |
99 | #ifndef M_2_SQRTPIf |
100 | #define M_2_SQRTPIf 1.12837916709551257390f /* 2/sqrt(pi) */ |
101 | #endif |
102 | #ifndef M_SQRT1_2 |
103 | #define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */ |
104 | #endif |
105 | #ifndef M_SQRT1_2f |
106 | #define M_SQRT1_2f 0.70710678118654752440f /* 1/sqrt(2) */ |
107 | #endif |
108 | #ifndef M_SQRT2 |
109 | #define M_SQRT2 1.41421356237309504880 /* sqrt(2) */ |
110 | #endif |
111 | #ifndef M_SQRT2f |
112 | #define M_SQRT2f 1.41421356237309504880f /* sqrt(2) */ |
113 | #endif |
114 | #ifndef NAN |
115 | #define NAN av_int2float(0x7fc00000) |
116 | #endif |
117 | #ifndef INFINITY |
118 | #define INFINITY av_int2float(0x7f800000) |
119 | #endif |
120 | |
121 | /** |
122 | * @addtogroup lavu_math |
123 | * |
124 | * @{ |
125 | */ |
126 | |
127 | /** |
128 | * Rounding methods. |
129 | */ |
130 | enum AVRounding { |
131 | AV_ROUND_ZERO = 0, ///< Round toward zero. |
132 | AV_ROUND_INF = 1, ///< Round away from zero. |
133 | AV_ROUND_DOWN = 2, ///< Round toward -infinity. |
134 | AV_ROUND_UP = 3, ///< Round toward +infinity. |
135 | AV_ROUND_NEAR_INF = 5, ///< Round to nearest and halfway cases away from zero. |
136 | /** |
137 | * Flag telling rescaling functions to pass `INT64_MIN`/`MAX` through |
138 | * unchanged, avoiding special cases for #AV_NOPTS_VALUE. |
139 | * |
140 | * Unlike other values of the enumeration AVRounding, this value is a |
141 | * bitmask that must be used in conjunction with another value of the |
142 | * enumeration through a bitwise OR, in order to set behavior for normal |
143 | * cases. |
144 | * |
145 | * @code{.c} |
146 | * av_rescale_rnd(3, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX); |
147 | * // Rescaling 3: |
148 | * // Calculating 3 * 1 / 2 |
149 | * // 3 / 2 is rounded up to 2 |
150 | * // => 2 |
151 | * |
152 | * av_rescale_rnd(AV_NOPTS_VALUE, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX); |
153 | * // Rescaling AV_NOPTS_VALUE: |
154 | * // AV_NOPTS_VALUE == INT64_MIN |
155 | * // AV_NOPTS_VALUE is passed through |
156 | * // => AV_NOPTS_VALUE |
157 | * @endcode |
158 | */ |
159 | AV_ROUND_PASS_MINMAX = 8192, |
160 | }; |
161 | |
162 | /** |
163 | * Compute the greatest common divisor of two integer operands. |
164 | * |
165 | * @param a Operand |
166 | * @param b Operand |
167 | * @return GCD of a and b up to sign; if a >= 0 and b >= 0, return value is >= 0; |
168 | * if a == 0 and b == 0, returns 0. |
169 | */ |
170 | int64_t av_const av_gcd(int64_t a, int64_t b); |
171 | |
172 | /** |
173 | * Rescale a 64-bit integer with rounding to nearest. |
174 | * |
175 | * The operation is mathematically equivalent to `a * b / c`, but writing that |
176 | * directly can overflow. |
177 | * |
178 | * This function is equivalent to av_rescale_rnd() with #AV_ROUND_NEAR_INF. |
179 | * |
180 | * @see av_rescale_rnd(), av_rescale_q(), av_rescale_q_rnd() |
181 | */ |
182 | int64_t av_rescale(int64_t a, int64_t b, int64_t c) av_const; |
183 | |
184 | /** |
185 | * Rescale a 64-bit integer with specified rounding. |
186 | * |
187 | * The operation is mathematically equivalent to `a * b / c`, but writing that |
188 | * directly can overflow, and does not support different rounding methods. |
189 | * If the result is not representable then INT64_MIN is returned. |
190 | * |
191 | * @see av_rescale(), av_rescale_q(), av_rescale_q_rnd() |
192 | */ |
193 | int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd) av_const; |
194 | |
195 | /** |
196 | * Rescale a 64-bit integer by 2 rational numbers. |
197 | * |
198 | * The operation is mathematically equivalent to `a * bq / cq`. |
199 | * |
200 | * This function is equivalent to av_rescale_q_rnd() with #AV_ROUND_NEAR_INF. |
201 | * |
202 | * @see av_rescale(), av_rescale_rnd(), av_rescale_q_rnd() |
203 | */ |
204 | int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq) av_const; |
205 | |
206 | /** |
207 | * Rescale a 64-bit integer by 2 rational numbers with specified rounding. |
208 | * |
209 | * The operation is mathematically equivalent to `a * bq / cq`. |
210 | * |
211 | * @see av_rescale(), av_rescale_rnd(), av_rescale_q() |
212 | */ |
213 | int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq, |
214 | enum AVRounding rnd) av_const; |
215 | |
216 | /** |
217 | * Compare two timestamps each in its own time base. |
218 | * |
219 | * @return One of the following values: |
220 | * - -1 if `ts_a` is before `ts_b` |
221 | * - 1 if `ts_a` is after `ts_b` |
222 | * - 0 if they represent the same position |
223 | * |
224 | * @warning |
225 | * The result of the function is undefined if one of the timestamps is outside |
226 | * the `int64_t` range when represented in the other's timebase. |
227 | */ |
228 | int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b); |
229 | |
230 | /** |
231 | * Compare the remainders of two integer operands divided by a common divisor. |
232 | * |
233 | * In other words, compare the least significant `log2(mod)` bits of integers |
234 | * `a` and `b`. |
235 | * |
236 | * @code{.c} |
237 | * av_compare_mod(0x11, 0x02, 0x10) < 0 // since 0x11 % 0x10 (0x1) < 0x02 % 0x10 (0x2) |
238 | * av_compare_mod(0x11, 0x02, 0x20) > 0 // since 0x11 % 0x20 (0x11) > 0x02 % 0x20 (0x02) |
239 | * @endcode |
240 | * |
241 | * @param a Operand |
242 | * @param b Operand |
243 | * @param mod Divisor; must be a power of 2 |
244 | * @return |
245 | * - a negative value if `a % mod < b % mod` |
246 | * - a positive value if `a % mod > b % mod` |
247 | * - zero if `a % mod == b % mod` |
248 | */ |
249 | int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod); |
250 | |
251 | /** |
252 | * Rescale a timestamp while preserving known durations. |
253 | * |
254 | * This function is designed to be called per audio packet to scale the input |
255 | * timestamp to a different time base. Compared to a simple av_rescale_q() |
256 | * call, this function is robust against possible inconsistent frame durations. |
257 | * |
258 | * The `last` parameter is a state variable that must be preserved for all |
259 | * subsequent calls for the same stream. For the first call, `*last` should be |
260 | * initialized to #AV_NOPTS_VALUE. |
261 | * |
262 | * @param[in] in_tb Input time base |
263 | * @param[in] in_ts Input timestamp |
264 | * @param[in] fs_tb Duration time base; typically this is finer-grained |
265 | * (greater) than `in_tb` and `out_tb` |
266 | * @param[in] duration Duration till the next call to this function (i.e. |
267 | * duration of the current packet/frame) |
268 | * @param[in,out] last Pointer to a timestamp expressed in terms of |
269 | * `fs_tb`, acting as a state variable |
270 | * @param[in] out_tb Output timebase |
271 | * @return Timestamp expressed in terms of `out_tb` |
272 | * |
273 | * @note In the context of this function, "duration" is in term of samples, not |
274 | * seconds. |
275 | */ |
276 | int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts, AVRational fs_tb, int duration, int64_t *last, AVRational out_tb); |
277 | |
278 | /** |
279 | * Add a value to a timestamp. |
280 | * |
281 | * This function guarantees that when the same value is repeatly added that |
282 | * no accumulation of rounding errors occurs. |
283 | * |
284 | * @param[in] ts Input timestamp |
285 | * @param[in] ts_tb Input timestamp time base |
286 | * @param[in] inc Value to be added |
287 | * @param[in] inc_tb Time base of `inc` |
288 | */ |
289 | int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc); |
290 | |
291 | /** |
292 | * 0th order modified bessel function of the first kind. |
293 | */ |
294 | double av_bessel_i0(double x); |
295 | |
296 | /** |
297 | * @} |
298 | */ |
299 | |
300 | #endif /* AVUTIL_MATHEMATICS_H */ |
301 | |