| 1 | // Internal policy header for unordered_set and unordered_map -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2010-2025 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file bits/hashtable_policy.h |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. |
| 28 | * @headername{unordered_map,unordered_set} |
| 29 | */ |
| 30 | |
| 31 | #ifndef _HASHTABLE_POLICY_H |
| 32 | #define _HASHTABLE_POLICY_H 1 |
| 33 | |
| 34 | #include <tuple> // for std::tuple, std::forward_as_tuple |
| 35 | #include <bits/functional_hash.h> // for __is_fast_hash |
| 36 | #include <bits/stl_algobase.h> // for std::min |
| 37 | #include <bits/stl_pair.h> // for std::pair |
| 38 | #include <ext/aligned_buffer.h> // for __gnu_cxx::__aligned_buffer |
| 39 | #include <ext/alloc_traits.h> // for std::__alloc_rebind |
| 40 | #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits |
| 41 | |
| 42 | namespace std _GLIBCXX_VISIBILITY(default) |
| 43 | { |
| 44 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 45 | /// @cond undocumented |
| 46 | |
| 47 | template<typename _Key, typename _Value, typename _Alloc, |
| 48 | typename _ExtractKey, typename _Equal, |
| 49 | typename _Hash, typename _RangeHash, typename _Unused, |
| 50 | typename _RehashPolicy, typename _Traits> |
| 51 | class _Hashtable; |
| 52 | |
| 53 | namespace __detail |
| 54 | { |
| 55 | /** |
| 56 | * @defgroup hashtable-detail Base and Implementation Classes |
| 57 | * @ingroup unordered_associative_containers |
| 58 | * @{ |
| 59 | */ |
| 60 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 61 | typename _Equal, typename _Hash, typename _RangeHash, |
| 62 | typename _Unused, typename _Traits> |
| 63 | struct _Hashtable_base; |
| 64 | |
| 65 | #pragma GCC diagnostic push |
| 66 | #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| 67 | // Helper function: return distance(first, last) for forward |
| 68 | // iterators, or 0/1 for input iterators. |
| 69 | template<typename _Iterator> |
| 70 | inline typename std::iterator_traits<_Iterator>::difference_type |
| 71 | __distance_fw(_Iterator __first, _Iterator __last) |
| 72 | { |
| 73 | using _Cat = typename std::iterator_traits<_Iterator>::iterator_category; |
| 74 | if constexpr (is_convertible<_Cat, forward_iterator_tag>::value) |
| 75 | return std::distance(__first, __last); |
| 76 | else |
| 77 | return __first != __last ? 1 : 0; |
| 78 | } |
| 79 | #pragma GCC diagnostic pop |
| 80 | |
| 81 | struct _Identity |
| 82 | { |
| 83 | template<typename _Tp> |
| 84 | _Tp&& |
| 85 | operator()(_Tp&& __x) const noexcept |
| 86 | { return std::forward<_Tp>(__x); } |
| 87 | }; |
| 88 | |
| 89 | struct _Select1st |
| 90 | { |
| 91 | template<typename _Pair> |
| 92 | struct __1st_type; |
| 93 | |
| 94 | template<typename _Tp, typename _Up> |
| 95 | struct __1st_type<pair<_Tp, _Up>> |
| 96 | { using type = _Tp; }; |
| 97 | |
| 98 | template<typename _Tp, typename _Up> |
| 99 | struct __1st_type<const pair<_Tp, _Up>> |
| 100 | { using type = const _Tp; }; |
| 101 | |
| 102 | template<typename _Pair> |
| 103 | struct __1st_type<_Pair&> |
| 104 | { using type = typename __1st_type<_Pair>::type&; }; |
| 105 | |
| 106 | template<typename _Tp> |
| 107 | typename __1st_type<_Tp>::type&& |
| 108 | operator()(_Tp&& __x) const noexcept |
| 109 | { return std::forward<_Tp>(__x).first; } |
| 110 | }; |
| 111 | |
| 112 | template<typename _ExKey> |
| 113 | struct _NodeBuilder; |
| 114 | |
| 115 | template<> |
| 116 | struct _NodeBuilder<_Select1st> |
| 117 | { |
| 118 | template<typename _Kt, typename _Arg, typename _NodeGenerator> |
| 119 | static auto |
| 120 | _S_build(_Kt&& __k, _Arg&& __arg, _NodeGenerator& __node_gen) |
| 121 | -> typename _NodeGenerator::__node_ptr |
| 122 | { |
| 123 | return __node_gen(std::forward<_Kt>(__k), |
| 124 | std::forward<_Arg>(__arg).second); |
| 125 | } |
| 126 | }; |
| 127 | |
| 128 | template<> |
| 129 | struct _NodeBuilder<_Identity> |
| 130 | { |
| 131 | template<typename _Kt, typename _Arg, typename _NodeGenerator> |
| 132 | static auto |
| 133 | _S_build(_Kt&& __k, _Arg&&, _NodeGenerator& __node_gen) |
| 134 | -> typename _NodeGenerator::__node_ptr |
| 135 | { return __node_gen(std::forward<_Kt>(__k)); } |
| 136 | }; |
| 137 | |
| 138 | template<typename _HashtableAlloc, typename _NodePtr> |
| 139 | struct _NodePtrGuard |
| 140 | { |
| 141 | _HashtableAlloc& _M_h; |
| 142 | _NodePtr _M_ptr; |
| 143 | |
| 144 | ~_NodePtrGuard() |
| 145 | { |
| 146 | if (_M_ptr) |
| 147 | _M_h._M_deallocate_node_ptr(_M_ptr); |
| 148 | } |
| 149 | }; |
| 150 | |
| 151 | template<typename _NodeAlloc> |
| 152 | struct _Hashtable_alloc; |
| 153 | |
| 154 | // Functor recycling a pool of nodes and using allocation once the pool is |
| 155 | // empty. |
| 156 | template<typename _NodeAlloc> |
| 157 | struct _ReuseOrAllocNode |
| 158 | { |
| 159 | private: |
| 160 | using __node_alloc_type = _NodeAlloc; |
| 161 | using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; |
| 162 | using __node_alloc_traits = |
| 163 | typename __hashtable_alloc::__node_alloc_traits; |
| 164 | |
| 165 | public: |
| 166 | using __node_ptr = typename __hashtable_alloc::__node_ptr; |
| 167 | |
| 168 | _ReuseOrAllocNode(__node_ptr __nodes, __hashtable_alloc& __h) |
| 169 | : _M_nodes(__nodes), _M_h(__h) { } |
| 170 | _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; |
| 171 | |
| 172 | ~_ReuseOrAllocNode() |
| 173 | { _M_h._M_deallocate_nodes(_M_nodes); } |
| 174 | |
| 175 | #pragma GCC diagnostic push |
| 176 | #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| 177 | template<typename _Arg> |
| 178 | __node_ptr |
| 179 | operator()(_Arg&& __arg) |
| 180 | { |
| 181 | if (!_M_nodes) |
| 182 | return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); |
| 183 | |
| 184 | using value_type = typename _NodeAlloc::value_type::value_type; |
| 185 | |
| 186 | __node_ptr __node = _M_nodes; |
| 187 | if constexpr (is_assignable<value_type&, _Arg>::value) |
| 188 | { |
| 189 | __node->_M_v() = std::forward<_Arg>(__arg); |
| 190 | _M_nodes = _M_nodes->_M_next(); |
| 191 | __node->_M_nxt = nullptr; |
| 192 | } |
| 193 | else |
| 194 | { |
| 195 | _M_nodes = _M_nodes->_M_next(); |
| 196 | __node->_M_nxt = nullptr; |
| 197 | auto& __a = _M_h._M_node_allocator(); |
| 198 | __node_alloc_traits::destroy(__a, __node->_M_valptr()); |
| 199 | _NodePtrGuard<__hashtable_alloc, __node_ptr> |
| 200 | __guard{ _M_h, __node }; |
| 201 | __node_alloc_traits::construct(__a, __node->_M_valptr(), |
| 202 | std::forward<_Arg>(__arg)); |
| 203 | __guard._M_ptr = nullptr; |
| 204 | } |
| 205 | return __node; |
| 206 | } |
| 207 | #pragma GCC diagnostic pop |
| 208 | |
| 209 | private: |
| 210 | __node_ptr _M_nodes; |
| 211 | __hashtable_alloc& _M_h; |
| 212 | }; |
| 213 | |
| 214 | // Functor similar to the previous one but without any pool of nodes to |
| 215 | // recycle. |
| 216 | template<typename _NodeAlloc> |
| 217 | struct _AllocNode |
| 218 | { |
| 219 | private: |
| 220 | using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; |
| 221 | |
| 222 | public: |
| 223 | using __node_ptr = typename __hashtable_alloc::__node_ptr; |
| 224 | |
| 225 | _AllocNode(__hashtable_alloc& __h) |
| 226 | : _M_h(__h) { } |
| 227 | |
| 228 | template<typename... _Args> |
| 229 | __node_ptr |
| 230 | operator()(_Args&&... __args) const |
| 231 | { return _M_h._M_allocate_node(std::forward<_Args>(__args)...); } |
| 232 | |
| 233 | private: |
| 234 | __hashtable_alloc& _M_h; |
| 235 | }; |
| 236 | |
| 237 | // Auxiliary types used for all instantiations of _Hashtable nodes |
| 238 | // and iterators. |
| 239 | |
| 240 | /** |
| 241 | * struct _Hashtable_traits |
| 242 | * |
| 243 | * Important traits for hash tables. |
| 244 | * |
| 245 | * @tparam _Cache_hash_code Boolean value. True if the value of |
| 246 | * the hash function is stored along with the value. This is a |
| 247 | * time-space tradeoff. Storing it may improve lookup speed by |
| 248 | * reducing the number of times we need to call the _Hash or _Equal |
| 249 | * functors. |
| 250 | * |
| 251 | * @tparam _Constant_iterators Boolean value. True if iterator and |
| 252 | * const_iterator are both constant iterator types. This is true |
| 253 | * for unordered_set and unordered_multiset, false for |
| 254 | * unordered_map and unordered_multimap. |
| 255 | * |
| 256 | * @tparam _Unique_keys Boolean value. True if the return value |
| 257 | * of _Hashtable::count(k) is always at most one, false if it may |
| 258 | * be an arbitrary number. This is true for unordered_set and |
| 259 | * unordered_map, false for unordered_multiset and |
| 260 | * unordered_multimap. |
| 261 | */ |
| 262 | template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> |
| 263 | struct _Hashtable_traits |
| 264 | { |
| 265 | using __hash_cached = __bool_constant<_Cache_hash_code>; |
| 266 | using __constant_iterators = __bool_constant<_Constant_iterators>; |
| 267 | using __unique_keys = __bool_constant<_Unique_keys>; |
| 268 | }; |
| 269 | |
| 270 | /** |
| 271 | * struct _Hashtable_hash_traits |
| 272 | * |
| 273 | * Important traits for hash tables depending on associated hasher. |
| 274 | * |
| 275 | */ |
| 276 | template<typename _Hash> |
| 277 | struct _Hashtable_hash_traits |
| 278 | { |
| 279 | static constexpr size_t |
| 280 | __small_size_threshold() noexcept |
| 281 | { return std::__is_fast_hash<_Hash>::value ? 0 : 20; } |
| 282 | }; |
| 283 | |
| 284 | /** |
| 285 | * struct _Hash_node_base |
| 286 | * |
| 287 | * Nodes, used to wrap elements stored in the hash table. A policy |
| 288 | * template parameter of class template _Hashtable controls whether |
| 289 | * nodes also store a hash code. In some cases (e.g. strings) this |
| 290 | * may be a performance win. |
| 291 | */ |
| 292 | struct _Hash_node_base |
| 293 | { |
| 294 | _Hash_node_base* _M_nxt; |
| 295 | |
| 296 | _Hash_node_base() noexcept : _M_nxt() { } |
| 297 | |
| 298 | _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } |
| 299 | }; |
| 300 | |
| 301 | /** |
| 302 | * struct _Hash_node_value_base |
| 303 | * |
| 304 | * Node type with the value to store. |
| 305 | */ |
| 306 | template<typename _Value> |
| 307 | struct _Hash_node_value_base |
| 308 | { |
| 309 | using value_type = _Value; |
| 310 | |
| 311 | __gnu_cxx::__aligned_buffer<_Value> _M_storage; |
| 312 | |
| 313 | // These member functions must be always_inline, see PR 111050 |
| 314 | |
| 315 | [[__gnu__::__always_inline__]] |
| 316 | _Value* |
| 317 | _M_valptr() noexcept |
| 318 | { return _M_storage._M_ptr(); } |
| 319 | |
| 320 | [[__gnu__::__always_inline__]] |
| 321 | const _Value* |
| 322 | _M_valptr() const noexcept |
| 323 | { return _M_storage._M_ptr(); } |
| 324 | |
| 325 | [[__gnu__::__always_inline__]] |
| 326 | _Value& |
| 327 | _M_v() noexcept |
| 328 | { return *_M_valptr(); } |
| 329 | |
| 330 | [[__gnu__::__always_inline__]] |
| 331 | const _Value& |
| 332 | _M_v() const noexcept |
| 333 | { return *_M_valptr(); } |
| 334 | }; |
| 335 | |
| 336 | /** |
| 337 | * Primary template struct _Hash_node_code_cache. |
| 338 | */ |
| 339 | template<bool _Cache_hash_code> |
| 340 | struct _Hash_node_code_cache |
| 341 | { }; |
| 342 | |
| 343 | /** |
| 344 | * Specialization for node with cache, struct _Hash_node_code_cache. |
| 345 | */ |
| 346 | template<> |
| 347 | struct _Hash_node_code_cache<true> |
| 348 | { size_t _M_hash_code; }; |
| 349 | |
| 350 | template<typename _Value, bool _Cache_hash_code> |
| 351 | struct _Hash_node_value |
| 352 | : _Hash_node_value_base<_Value> |
| 353 | , _Hash_node_code_cache<_Cache_hash_code> |
| 354 | { }; |
| 355 | |
| 356 | /** |
| 357 | * Primary template struct _Hash_node. |
| 358 | */ |
| 359 | template<typename _Value, bool _Cache_hash_code> |
| 360 | struct _Hash_node |
| 361 | : _Hash_node_base |
| 362 | , _Hash_node_value<_Value, _Cache_hash_code> |
| 363 | { |
| 364 | _Hash_node* |
| 365 | _M_next() const noexcept |
| 366 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
| 367 | }; |
| 368 | |
| 369 | /// Base class for node iterators. |
| 370 | template<typename _Value, bool _Cache_hash_code> |
| 371 | struct _Node_iterator_base |
| 372 | { |
| 373 | using __node_type = _Hash_node<_Value, _Cache_hash_code>; |
| 374 | |
| 375 | __node_type* _M_cur; |
| 376 | |
| 377 | _Node_iterator_base() : _M_cur(nullptr) { } |
| 378 | _Node_iterator_base(__node_type* __p) noexcept |
| 379 | : _M_cur(__p) { } |
| 380 | |
| 381 | void |
| 382 | _M_incr() noexcept |
| 383 | { _M_cur = _M_cur->_M_next(); } |
| 384 | |
| 385 | friend bool |
| 386 | operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
| 387 | noexcept |
| 388 | { return __x._M_cur == __y._M_cur; } |
| 389 | |
| 390 | #if __cpp_impl_three_way_comparison < 201907L |
| 391 | friend bool |
| 392 | operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
| 393 | noexcept |
| 394 | { return __x._M_cur != __y._M_cur; } |
| 395 | #endif |
| 396 | }; |
| 397 | |
| 398 | /// Node iterators, used to iterate through all the hashtable. |
| 399 | template<typename _Value, bool __constant_iterators, bool __cache> |
| 400 | struct _Node_iterator |
| 401 | : public _Node_iterator_base<_Value, __cache> |
| 402 | { |
| 403 | private: |
| 404 | using __base_type = _Node_iterator_base<_Value, __cache>; |
| 405 | using __node_type = typename __base_type::__node_type; |
| 406 | |
| 407 | public: |
| 408 | using value_type = _Value; |
| 409 | using difference_type = ptrdiff_t; |
| 410 | using iterator_category = forward_iterator_tag; |
| 411 | |
| 412 | using pointer = __conditional_t<__constant_iterators, |
| 413 | const value_type*, value_type*>; |
| 414 | |
| 415 | using reference = __conditional_t<__constant_iterators, |
| 416 | const value_type&, value_type&>; |
| 417 | |
| 418 | _Node_iterator() = default; |
| 419 | |
| 420 | explicit |
| 421 | _Node_iterator(__node_type* __p) noexcept |
| 422 | : __base_type(__p) { } |
| 423 | |
| 424 | reference |
| 425 | operator*() const noexcept |
| 426 | { return this->_M_cur->_M_v(); } |
| 427 | |
| 428 | pointer |
| 429 | operator->() const noexcept |
| 430 | { return this->_M_cur->_M_valptr(); } |
| 431 | |
| 432 | _Node_iterator& |
| 433 | operator++() noexcept |
| 434 | { |
| 435 | this->_M_incr(); |
| 436 | return *this; |
| 437 | } |
| 438 | |
| 439 | _Node_iterator |
| 440 | operator++(int) noexcept |
| 441 | { |
| 442 | _Node_iterator __tmp(*this); |
| 443 | this->_M_incr(); |
| 444 | return __tmp; |
| 445 | } |
| 446 | |
| 447 | #if __cpp_impl_three_way_comparison >= 201907L |
| 448 | friend bool |
| 449 | operator==(const _Node_iterator&, const _Node_iterator&) = default; |
| 450 | #else |
| 451 | friend bool |
| 452 | operator==(const _Node_iterator& __x, const _Node_iterator& __y) noexcept |
| 453 | { |
| 454 | const __base_type& __bx = __x; |
| 455 | const __base_type& __by = __y; |
| 456 | return __bx == __by; |
| 457 | } |
| 458 | |
| 459 | friend bool |
| 460 | operator!=(const _Node_iterator& __x, const _Node_iterator& __y) noexcept |
| 461 | { return !(__x == __y); } |
| 462 | #endif |
| 463 | }; |
| 464 | |
| 465 | /// Node const_iterators, used to iterate through all the hashtable. |
| 466 | template<typename _Value, bool __constant_iterators, bool __cache> |
| 467 | struct _Node_const_iterator |
| 468 | : public _Node_iterator_base<_Value, __cache> |
| 469 | { |
| 470 | private: |
| 471 | using __base_type = _Node_iterator_base<_Value, __cache>; |
| 472 | using __node_type = typename __base_type::__node_type; |
| 473 | |
| 474 | // The corresponding non-const iterator. |
| 475 | using __iterator |
| 476 | = _Node_iterator<_Value, __constant_iterators, __cache>; |
| 477 | |
| 478 | public: |
| 479 | using value_type = _Value; |
| 480 | using difference_type = ptrdiff_t; |
| 481 | using iterator_category = forward_iterator_tag; |
| 482 | |
| 483 | using pointer = const value_type*; |
| 484 | using reference = const value_type&; |
| 485 | |
| 486 | _Node_const_iterator() = default; |
| 487 | |
| 488 | explicit |
| 489 | _Node_const_iterator(__node_type* __p) noexcept |
| 490 | : __base_type(__p) { } |
| 491 | |
| 492 | _Node_const_iterator(const __iterator& __x) noexcept |
| 493 | : __base_type(__x._M_cur) { } |
| 494 | |
| 495 | reference |
| 496 | operator*() const noexcept |
| 497 | { return this->_M_cur->_M_v(); } |
| 498 | |
| 499 | pointer |
| 500 | operator->() const noexcept |
| 501 | { return this->_M_cur->_M_valptr(); } |
| 502 | |
| 503 | _Node_const_iterator& |
| 504 | operator++() noexcept |
| 505 | { |
| 506 | this->_M_incr(); |
| 507 | return *this; |
| 508 | } |
| 509 | |
| 510 | _Node_const_iterator |
| 511 | operator++(int) noexcept |
| 512 | { |
| 513 | _Node_const_iterator __tmp(*this); |
| 514 | this->_M_incr(); |
| 515 | return __tmp; |
| 516 | } |
| 517 | |
| 518 | #if __cpp_impl_three_way_comparison >= 201907L |
| 519 | friend bool |
| 520 | operator==(const _Node_const_iterator&, |
| 521 | const _Node_const_iterator&) = default; |
| 522 | |
| 523 | friend bool |
| 524 | operator==(const _Node_const_iterator& __x, const __iterator& __y) |
| 525 | { |
| 526 | const __base_type& __bx = __x; |
| 527 | const __base_type& __by = __y; |
| 528 | return __bx == __by; |
| 529 | } |
| 530 | #else |
| 531 | friend bool |
| 532 | operator==(const _Node_const_iterator& __x, |
| 533 | const _Node_const_iterator& __y) noexcept |
| 534 | { |
| 535 | const __base_type& __bx = __x; |
| 536 | const __base_type& __by = __y; |
| 537 | return __bx == __by; |
| 538 | } |
| 539 | |
| 540 | friend bool |
| 541 | operator!=(const _Node_const_iterator& __x, |
| 542 | const _Node_const_iterator& __y) noexcept |
| 543 | { return !(__x == __y); } |
| 544 | |
| 545 | friend bool |
| 546 | operator==(const _Node_const_iterator& __x, |
| 547 | const __iterator& __y) noexcept |
| 548 | { |
| 549 | const __base_type& __bx = __x; |
| 550 | const __base_type& __by = __y; |
| 551 | return __bx == __by; |
| 552 | } |
| 553 | |
| 554 | friend bool |
| 555 | operator!=(const _Node_const_iterator& __x, |
| 556 | const __iterator& __y) noexcept |
| 557 | { return !(__x == __y); } |
| 558 | |
| 559 | friend bool |
| 560 | operator==(const __iterator& __x, |
| 561 | const _Node_const_iterator& __y) noexcept |
| 562 | { |
| 563 | const __base_type& __bx = __x; |
| 564 | const __base_type& __by = __y; |
| 565 | return __bx == __by; |
| 566 | } |
| 567 | |
| 568 | friend bool |
| 569 | operator!=(const __iterator& __x, |
| 570 | const _Node_const_iterator& __y) noexcept |
| 571 | { return !(__x == __y); } |
| 572 | #endif |
| 573 | }; |
| 574 | |
| 575 | // Many of class template _Hashtable's template parameters are policy |
| 576 | // classes. These are defaults for the policies. |
| 577 | |
| 578 | /// Default range hashing function: use division to fold a large number |
| 579 | /// into the range [0, N). |
| 580 | struct _Mod_range_hashing |
| 581 | { |
| 582 | size_t |
| 583 | operator()(size_t __num, size_t __den) const noexcept |
| 584 | { return __num % __den; } |
| 585 | }; |
| 586 | |
| 587 | /// Default ranged hash function H. In principle it should be a |
| 588 | /// function object composed from objects of type H1 and H2 such that |
| 589 | /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of |
| 590 | /// h1 and h2. So instead we'll just use a tag to tell class template |
| 591 | /// hashtable to do that composition. |
| 592 | struct _Default_ranged_hash { }; |
| 593 | |
| 594 | /// Default value for rehash policy. Bucket size is (usually) the |
| 595 | /// smallest prime that keeps the load factor small enough. |
| 596 | struct _Prime_rehash_policy |
| 597 | { |
| 598 | using __has_load_factor = true_type; |
| 599 | |
| 600 | _Prime_rehash_policy(float __z = 1.0) noexcept |
| 601 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
| 602 | |
| 603 | float |
| 604 | max_load_factor() const noexcept |
| 605 | { return _M_max_load_factor; } |
| 606 | |
| 607 | // Return a bucket size no smaller than n. |
| 608 | // TODO: 'const' qualifier is kept for abi compatibility reason. |
| 609 | size_t |
| 610 | _M_next_bkt(size_t __n) const; |
| 611 | |
| 612 | // Return a bucket count appropriate for n elements |
| 613 | size_t |
| 614 | _M_bkt_for_elements(size_t __n) const |
| 615 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
| 616 | |
| 617 | // __n_bkt is current bucket count, __n_elt is current element count, |
| 618 | // and __n_ins is number of elements to be inserted. Do we need to |
| 619 | // increase bucket count? If so, return make_pair(true, n), where n |
| 620 | // is the new bucket count. If not, return make_pair(false, 0). |
| 621 | // TODO: 'const' qualifier is kept for abi compatibility reason. |
| 622 | std::pair<bool, size_t> |
| 623 | _M_need_rehash(size_t __n_bkt, size_t __n_elt, |
| 624 | size_t __n_ins) const; |
| 625 | |
| 626 | using _State = size_t; |
| 627 | |
| 628 | _State |
| 629 | _M_state() const |
| 630 | { return _M_next_resize; } |
| 631 | |
| 632 | void |
| 633 | _M_reset() noexcept |
| 634 | { _M_next_resize = 0; } |
| 635 | |
| 636 | void |
| 637 | _M_reset(_State __state) |
| 638 | { _M_next_resize = __state; } |
| 639 | |
| 640 | static const size_t _S_growth_factor = 2; |
| 641 | |
| 642 | float _M_max_load_factor; |
| 643 | |
| 644 | // TODO: 'mutable' kept for abi compatibility reason. |
| 645 | mutable size_t _M_next_resize; |
| 646 | }; |
| 647 | |
| 648 | /// Range hashing function assuming that second arg is a power of 2. |
| 649 | struct _Mask_range_hashing |
| 650 | { |
| 651 | size_t |
| 652 | operator()(size_t __num, size_t __den) const noexcept |
| 653 | { return __num & (__den - 1); } |
| 654 | }; |
| 655 | |
| 656 | /// Compute closest power of 2 not less than __n |
| 657 | inline size_t |
| 658 | __clp2(size_t __n) noexcept |
| 659 | { |
| 660 | using __gnu_cxx::__int_traits; |
| 661 | // Equivalent to return __n ? std::bit_ceil(__n) : 0; |
| 662 | if (__n < 2) |
| 663 | return __n; |
| 664 | const unsigned __lz = sizeof(size_t) > sizeof(long) |
| 665 | ? __builtin_clzll(__n - 1ull) |
| 666 | : __builtin_clzl(__n - 1ul); |
| 667 | // Doing two shifts avoids undefined behaviour when __lz == 0. |
| 668 | return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1; |
| 669 | } |
| 670 | |
| 671 | /// Rehash policy providing power of 2 bucket numbers. Avoids modulo |
| 672 | /// operations. |
| 673 | struct _Power2_rehash_policy |
| 674 | { |
| 675 | using __has_load_factor = true_type; |
| 676 | |
| 677 | _Power2_rehash_policy(float __z = 1.0) noexcept |
| 678 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
| 679 | |
| 680 | float |
| 681 | max_load_factor() const noexcept |
| 682 | { return _M_max_load_factor; } |
| 683 | |
| 684 | // Return a bucket size no smaller than n (as long as n is not above the |
| 685 | // highest power of 2). |
| 686 | size_t |
| 687 | _M_next_bkt(size_t __n) noexcept |
| 688 | { |
| 689 | if (__n == 0) |
| 690 | // Special case on container 1st initialization with 0 bucket count |
| 691 | // hint. We keep _M_next_resize to 0 to make sure that next time we |
| 692 | // want to add an element allocation will take place. |
| 693 | return 1; |
| 694 | |
| 695 | const auto __max_width = std::min<size_t>(a: sizeof(size_t), b: 8); |
| 696 | const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); |
| 697 | size_t __res = __clp2(__n); |
| 698 | |
| 699 | if (__res == 0) |
| 700 | __res = __max_bkt; |
| 701 | else if (__res == 1) |
| 702 | // If __res is 1 we force it to 2 to make sure there will be an |
| 703 | // allocation so that nothing need to be stored in the initial |
| 704 | // single bucket |
| 705 | __res = 2; |
| 706 | |
| 707 | if (__res == __max_bkt) |
| 708 | // Set next resize to the max value so that we never try to rehash again |
| 709 | // as we already reach the biggest possible bucket number. |
| 710 | // Note that it might result in max_load_factor not being respected. |
| 711 | _M_next_resize = size_t(-1); |
| 712 | else |
| 713 | _M_next_resize |
| 714 | = __builtin_floor(__res * (double)_M_max_load_factor); |
| 715 | |
| 716 | return __res; |
| 717 | } |
| 718 | |
| 719 | // Return a bucket count appropriate for n elements |
| 720 | size_t |
| 721 | _M_bkt_for_elements(size_t __n) const noexcept |
| 722 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
| 723 | |
| 724 | // __n_bkt is current bucket count, __n_elt is current element count, |
| 725 | // and __n_ins is number of elements to be inserted. Do we need to |
| 726 | // increase bucket count? If so, return make_pair(true, n), where n |
| 727 | // is the new bucket count. If not, return make_pair(false, 0). |
| 728 | std::pair<bool, size_t> |
| 729 | _M_need_rehash(size_t __n_bkt, size_t __n_elt, size_t __n_ins) noexcept |
| 730 | { |
| 731 | if (__n_elt + __n_ins > _M_next_resize) |
| 732 | { |
| 733 | // If _M_next_resize is 0 it means that we have nothing allocated so |
| 734 | // far and that we start inserting elements. In this case we start |
| 735 | // with an initial bucket size of 11. |
| 736 | double __min_bkts |
| 737 | = std::max<size_t>(a: __n_elt + __n_ins, b: _M_next_resize ? 0 : 11) |
| 738 | / (double)_M_max_load_factor; |
| 739 | if (__min_bkts >= __n_bkt) |
| 740 | return { true, |
| 741 | _M_next_bkt(n: std::max<size_t>(a: __builtin_floor(__min_bkts) + 1, |
| 742 | b: __n_bkt * _S_growth_factor)) }; |
| 743 | |
| 744 | _M_next_resize |
| 745 | = __builtin_floor(__n_bkt * (double)_M_max_load_factor); |
| 746 | return { false, 0 }; |
| 747 | } |
| 748 | else |
| 749 | return { false, 0 }; |
| 750 | } |
| 751 | |
| 752 | using _State = size_t; |
| 753 | |
| 754 | _State |
| 755 | _M_state() const noexcept |
| 756 | { return _M_next_resize; } |
| 757 | |
| 758 | void |
| 759 | _M_reset() noexcept |
| 760 | { _M_next_resize = 0; } |
| 761 | |
| 762 | void |
| 763 | _M_reset(_State __state) noexcept |
| 764 | { _M_next_resize = __state; } |
| 765 | |
| 766 | static const size_t _S_growth_factor = 2; |
| 767 | |
| 768 | float _M_max_load_factor; |
| 769 | size_t _M_next_resize; |
| 770 | }; |
| 771 | |
| 772 | template<typename _RehashPolicy> |
| 773 | struct _RehashStateGuard |
| 774 | { |
| 775 | _RehashPolicy* _M_guarded_obj; |
| 776 | typename _RehashPolicy::_State _M_prev_state; |
| 777 | |
| 778 | _RehashStateGuard(_RehashPolicy& __policy) |
| 779 | : _M_guarded_obj(std::__addressof(__policy)) |
| 780 | , _M_prev_state(__policy._M_state()) |
| 781 | { } |
| 782 | _RehashStateGuard(const _RehashStateGuard&) = delete; |
| 783 | |
| 784 | ~_RehashStateGuard() |
| 785 | { |
| 786 | if (_M_guarded_obj) |
| 787 | _M_guarded_obj->_M_reset(_M_prev_state); |
| 788 | } |
| 789 | }; |
| 790 | |
| 791 | // Base classes for std::_Hashtable. We define these base classes |
| 792 | // because in some cases we want to do different things depending on |
| 793 | // the value of a policy class. In some cases the policy class |
| 794 | // affects which member functions and nested typedefs are defined; |
| 795 | // we handle that by specializing base class templates. Several of |
| 796 | // the base class templates need to access other members of class |
| 797 | // template _Hashtable, so we use a variant of the "Curiously |
| 798 | // Recurring Template Pattern" (CRTP) technique. |
| 799 | |
| 800 | /** |
| 801 | * Primary class template _Map_base. |
| 802 | * |
| 803 | * If the hashtable has a value type of the form pair<const T1, T2> and |
| 804 | * a key extraction policy (_ExtractKey) that returns the first part |
| 805 | * of the pair, the hashtable gets a mapped_type typedef. If it |
| 806 | * satisfies those criteria and also has unique keys, then it also |
| 807 | * gets an operator[]. |
| 808 | */ |
| 809 | template<typename _Key, typename _Value, typename _Alloc, |
| 810 | typename _ExtractKey, typename _Equal, |
| 811 | typename _Hash, typename _RangeHash, typename _Unused, |
| 812 | typename _RehashPolicy, typename _Traits, |
| 813 | bool _Unique_keys = _Traits::__unique_keys::value> |
| 814 | struct _Map_base { }; |
| 815 | |
| 816 | /// Partial specialization, __unique_keys set to false, std::pair value type. |
| 817 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 818 | typename _Hash, typename _RangeHash, typename _Unused, |
| 819 | typename _RehashPolicy, typename _Traits> |
| 820 | struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| 821 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
| 822 | { |
| 823 | using mapped_type = _Val; |
| 824 | }; |
| 825 | |
| 826 | /// Partial specialization, __unique_keys set to true. |
| 827 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 828 | typename _Hash, typename _RangeHash, typename _Unused, |
| 829 | typename _RehashPolicy, typename _Traits> |
| 830 | struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| 831 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
| 832 | { |
| 833 | private: |
| 834 | using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>, |
| 835 | _Select1st, _Equal, _Hash, |
| 836 | _RangeHash, _Unused, |
| 837 | _Traits>; |
| 838 | |
| 839 | using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc, |
| 840 | _Select1st, _Equal, _Hash, _RangeHash, |
| 841 | _Unused, _RehashPolicy, _Traits>; |
| 842 | |
| 843 | using __hash_code = typename __hashtable_base::__hash_code; |
| 844 | |
| 845 | public: |
| 846 | using key_type = typename __hashtable_base::key_type; |
| 847 | using mapped_type = _Val; |
| 848 | |
| 849 | mapped_type& |
| 850 | operator[](const key_type& __k); |
| 851 | |
| 852 | mapped_type& |
| 853 | operator[](key_type&& __k); |
| 854 | |
| 855 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| 856 | // DR 761. unordered_map needs an at() member function. |
| 857 | mapped_type& |
| 858 | at(const key_type& __k) |
| 859 | { |
| 860 | auto __ite = static_cast<__hashtable*>(this)->find(__k); |
| 861 | if (!__ite._M_cur) |
| 862 | __throw_out_of_range(__N("unordered_map::at" )); |
| 863 | return __ite->second; |
| 864 | } |
| 865 | |
| 866 | const mapped_type& |
| 867 | at(const key_type& __k) const |
| 868 | { |
| 869 | auto __ite = static_cast<const __hashtable*>(this)->find(__k); |
| 870 | if (!__ite._M_cur) |
| 871 | __throw_out_of_range(__N("unordered_map::at" )); |
| 872 | return __ite->second; |
| 873 | } |
| 874 | }; |
| 875 | |
| 876 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 877 | typename _Hash, typename _RangeHash, typename _Unused, |
| 878 | typename _RehashPolicy, typename _Traits> |
| 879 | auto |
| 880 | _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| 881 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
| 882 | operator[](const key_type& __k) |
| 883 | -> mapped_type& |
| 884 | { |
| 885 | __hashtable* __h = static_cast<__hashtable*>(this); |
| 886 | __hash_code __code = __h->_M_hash_code(__k); |
| 887 | size_t __bkt = __h->_M_bucket_index(__code); |
| 888 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
| 889 | return __node->_M_v().second; |
| 890 | |
| 891 | typename __hashtable::_Scoped_node __node { |
| 892 | __h, |
| 893 | std::piecewise_construct, |
| 894 | std::tuple<const key_type&>(__k), |
| 895 | std::tuple<>() |
| 896 | }; |
| 897 | auto __pos |
| 898 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
| 899 | __node._M_node = nullptr; |
| 900 | return __pos->second; |
| 901 | } |
| 902 | |
| 903 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 904 | typename _Hash, typename _RangeHash, typename _Unused, |
| 905 | typename _RehashPolicy, typename _Traits> |
| 906 | auto |
| 907 | _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| 908 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
| 909 | operator[](key_type&& __k) |
| 910 | -> mapped_type& |
| 911 | { |
| 912 | __hashtable* __h = static_cast<__hashtable*>(this); |
| 913 | __hash_code __code = __h->_M_hash_code(__k); |
| 914 | size_t __bkt = __h->_M_bucket_index(__code); |
| 915 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
| 916 | return __node->_M_v().second; |
| 917 | |
| 918 | typename __hashtable::_Scoped_node __node { |
| 919 | __h, |
| 920 | std::piecewise_construct, |
| 921 | std::forward_as_tuple(std::move(__k)), |
| 922 | std::tuple<>() |
| 923 | }; |
| 924 | auto __pos |
| 925 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
| 926 | __node._M_node = nullptr; |
| 927 | return __pos->second; |
| 928 | } |
| 929 | |
| 930 | // Partial specialization for unordered_map<const T, U>, see PR 104174. |
| 931 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 932 | typename _Hash, typename _RangeHash, typename _Unused, |
| 933 | typename _RehashPolicy, typename _Traits, bool __uniq> |
| 934 | struct _Map_base<const _Key, pair<const _Key, _Val>, |
| 935 | _Alloc, _Select1st, _Equal, _Hash, |
| 936 | _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
| 937 | : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash, |
| 938 | _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
| 939 | { }; |
| 940 | |
| 941 | template<typename _Policy> |
| 942 | using __has_load_factor = typename _Policy::__has_load_factor; |
| 943 | |
| 944 | /** |
| 945 | * Primary class template _Rehash_base. |
| 946 | * |
| 947 | * Give hashtable the max_load_factor functions and reserve iff the |
| 948 | * rehash policy supports it. |
| 949 | */ |
| 950 | template<typename _Key, typename _Value, typename _Alloc, |
| 951 | typename _ExtractKey, typename _Equal, |
| 952 | typename _Hash, typename _RangeHash, typename _Unused, |
| 953 | typename _RehashPolicy, typename _Traits, |
| 954 | typename = |
| 955 | __detected_or_t<false_type, __has_load_factor, _RehashPolicy>> |
| 956 | struct _Rehash_base; |
| 957 | |
| 958 | /// Specialization when rehash policy doesn't provide load factor management. |
| 959 | template<typename _Key, typename _Value, typename _Alloc, |
| 960 | typename _ExtractKey, typename _Equal, |
| 961 | typename _Hash, typename _RangeHash, typename _Unused, |
| 962 | typename _RehashPolicy, typename _Traits> |
| 963 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 964 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
| 965 | false_type /* Has load factor */> |
| 966 | { |
| 967 | }; |
| 968 | |
| 969 | /// Specialization when rehash policy provide load factor management. |
| 970 | template<typename _Key, typename _Value, typename _Alloc, |
| 971 | typename _ExtractKey, typename _Equal, |
| 972 | typename _Hash, typename _RangeHash, typename _Unused, |
| 973 | typename _RehashPolicy, typename _Traits> |
| 974 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 975 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
| 976 | true_type /* Has load factor */> |
| 977 | { |
| 978 | private: |
| 979 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
| 980 | _Equal, _Hash, _RangeHash, _Unused, |
| 981 | _RehashPolicy, _Traits>; |
| 982 | |
| 983 | public: |
| 984 | float |
| 985 | max_load_factor() const noexcept |
| 986 | { |
| 987 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
| 988 | return __this->__rehash_policy().max_load_factor(); |
| 989 | } |
| 990 | |
| 991 | void |
| 992 | max_load_factor(float __z) |
| 993 | { |
| 994 | __hashtable* __this = static_cast<__hashtable*>(this); |
| 995 | __this->__rehash_policy(_RehashPolicy(__z)); |
| 996 | } |
| 997 | |
| 998 | void |
| 999 | reserve(size_t __n) |
| 1000 | { |
| 1001 | __hashtable* __this = static_cast<__hashtable*>(this); |
| 1002 | __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n)); |
| 1003 | } |
| 1004 | }; |
| 1005 | |
| 1006 | /** |
| 1007 | * Primary class template _Hashtable_ebo_helper. |
| 1008 | * |
| 1009 | * Helper class using [[no_unique_address]] to reduce object size. |
| 1010 | */ |
| 1011 | template<typename _Tp, |
| 1012 | bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> |
| 1013 | struct _Hashtable_ebo_helper |
| 1014 | { |
| 1015 | [[__no_unique_address__]] _Tp _M_obj; |
| 1016 | }; |
| 1017 | |
| 1018 | #if ! _GLIBCXX_INLINE_VERSION |
| 1019 | // For ABI compatibility reasons, [[no_unique_address]] is only used |
| 1020 | // for empty non-final types. |
| 1021 | template<typename _Tp> |
| 1022 | struct _Hashtable_ebo_helper<_Tp, false> |
| 1023 | { |
| 1024 | _Tp _M_obj; |
| 1025 | }; |
| 1026 | #endif |
| 1027 | |
| 1028 | /** |
| 1029 | * Primary class template _Local_iterator_base. |
| 1030 | * |
| 1031 | * Base class for local iterators, used to iterate within a bucket |
| 1032 | * but not between buckets. |
| 1033 | */ |
| 1034 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1035 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1036 | bool __cache_hash_code> |
| 1037 | struct _Local_iterator_base; |
| 1038 | |
| 1039 | // Wraps the _Hash object and provides some utility functions for using it. |
| 1040 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1041 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1042 | bool /* __cache_hash_code */> |
| 1043 | struct _Hash_code_base |
| 1044 | { |
| 1045 | // Gives the local iterator implementation access to _M_bucket_index(). |
| 1046 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1047 | _Hash, _RangeHash, _Unused, false>; |
| 1048 | public: |
| 1049 | using hasher = _Hash; |
| 1050 | |
| 1051 | hasher |
| 1052 | hash_function() const |
| 1053 | { return _M_hash._M_obj; } |
| 1054 | |
| 1055 | protected: |
| 1056 | [[__no_unique_address__]] _Hashtable_ebo_helper<_Hash> _M_hash{}; |
| 1057 | |
| 1058 | using __hash_code = size_t; |
| 1059 | |
| 1060 | // We need the default constructor for the local iterators and _Hashtable |
| 1061 | // default constructor. |
| 1062 | _Hash_code_base() = default; |
| 1063 | |
| 1064 | _Hash_code_base(const _Hash& __hash) : _M_hash{__hash} { } |
| 1065 | |
| 1066 | __hash_code |
| 1067 | _M_hash_code(const _Key& __k) const |
| 1068 | { |
| 1069 | static_assert(__is_invocable<const _Hash&, const _Key&>{}, |
| 1070 | "hash function must be invocable with an argument of key type" ); |
| 1071 | return _M_hash._M_obj(__k); |
| 1072 | } |
| 1073 | |
| 1074 | template<typename _Kt> |
| 1075 | __hash_code |
| 1076 | _M_hash_code_tr(const _Kt& __k) const |
| 1077 | { |
| 1078 | static_assert(__is_invocable<const _Hash&, const _Kt&>{}, |
| 1079 | "hash function must be invocable with an argument of key type" ); |
| 1080 | return _M_hash._M_obj(__k); |
| 1081 | } |
| 1082 | |
| 1083 | __hash_code |
| 1084 | _M_hash_code(const _Hash_node_value<_Value, false>& __n) const |
| 1085 | { return _M_hash_code(_ExtractKey{}(__n._M_v())); } |
| 1086 | |
| 1087 | __hash_code |
| 1088 | _M_hash_code(const _Hash_node_value<_Value, true>& __n) const |
| 1089 | { return __n._M_hash_code; } |
| 1090 | |
| 1091 | size_t |
| 1092 | _M_bucket_index(__hash_code __c, size_t __bkt_count) const |
| 1093 | { return _RangeHash{}(__c, __bkt_count); } |
| 1094 | |
| 1095 | size_t |
| 1096 | _M_bucket_index(const _Hash_node_value<_Value, false>& __n, |
| 1097 | size_t __bkt_count) const |
| 1098 | noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>())) ) |
| 1099 | { |
| 1100 | return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())), |
| 1101 | __bkt_count); |
| 1102 | } |
| 1103 | |
| 1104 | size_t |
| 1105 | _M_bucket_index(const _Hash_node_value<_Value, true>& __n, |
| 1106 | size_t __bkt_count) const noexcept |
| 1107 | { return _RangeHash{}(__n._M_hash_code, __bkt_count); } |
| 1108 | }; |
| 1109 | |
| 1110 | /// Partial specialization used when nodes contain a cached hash code. |
| 1111 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1112 | typename _Hash, typename _RangeHash, typename _Unused> |
| 1113 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1114 | _Hash, _RangeHash, _Unused, true> |
| 1115 | : public _Node_iterator_base<_Value, true> |
| 1116 | { |
| 1117 | protected: |
| 1118 | using __base_node_iter = _Node_iterator_base<_Value, true>; |
| 1119 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
| 1120 | _Hash, _RangeHash, _Unused, true>; |
| 1121 | |
| 1122 | _Local_iterator_base() = default; |
| 1123 | |
| 1124 | _Local_iterator_base(const __hash_code_base&, |
| 1125 | _Hash_node<_Value, true>* __p, |
| 1126 | size_t __bkt, size_t __bkt_count) |
| 1127 | : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
| 1128 | { } |
| 1129 | |
| 1130 | void |
| 1131 | _M_incr() |
| 1132 | { |
| 1133 | __base_node_iter::_M_incr(); |
| 1134 | if (this->_M_cur) |
| 1135 | { |
| 1136 | size_t __bkt |
| 1137 | = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count); |
| 1138 | if (__bkt != _M_bucket) |
| 1139 | this->_M_cur = nullptr; |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | size_t _M_bucket = 0; |
| 1144 | size_t _M_bucket_count = 0; |
| 1145 | |
| 1146 | public: |
| 1147 | size_t |
| 1148 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
| 1149 | }; |
| 1150 | |
| 1151 | // Uninitialized storage for a _Hash object in a local iterator. |
| 1152 | // This type is DefaultConstructible even if the _Hash type isn't, |
| 1153 | // so that _Local_iterator_base<..., false> can be DefaultConstructible. |
| 1154 | template<typename _Hash> |
| 1155 | struct _Hash_obj_storage |
| 1156 | { |
| 1157 | union _Uninit_storage |
| 1158 | { |
| 1159 | _Uninit_storage() noexcept { } |
| 1160 | ~_Uninit_storage() { } |
| 1161 | |
| 1162 | [[__no_unique_address__]] _Hash _M_h; |
| 1163 | }; |
| 1164 | |
| 1165 | [[__no_unique_address__]] _Uninit_storage _M_u; |
| 1166 | }; |
| 1167 | |
| 1168 | // Partial specialization used when hash codes are not cached |
| 1169 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1170 | typename _Hash, typename _RangeHash, typename _Unused> |
| 1171 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1172 | _Hash, _RangeHash, _Unused, false> |
| 1173 | : _Hash_obj_storage<_Hash>, _Node_iterator_base<_Value, false> |
| 1174 | { |
| 1175 | protected: |
| 1176 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
| 1177 | _Hash, _RangeHash, _Unused, false>; |
| 1178 | using __hash_obj_storage = _Hash_obj_storage<_Hash>; |
| 1179 | using __node_iter_base = _Node_iterator_base<_Value, false>; |
| 1180 | |
| 1181 | _Local_iterator_base() = default; |
| 1182 | |
| 1183 | _Local_iterator_base(const __hash_code_base& __base, |
| 1184 | _Hash_node<_Value, false>* __p, |
| 1185 | size_t __bkt, size_t __bkt_count) |
| 1186 | : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
| 1187 | { _M_init(h: __base._M_hash._M_obj); } |
| 1188 | |
| 1189 | ~_Local_iterator_base() |
| 1190 | { |
| 1191 | if (_M_bucket_count != size_t(-1)) |
| 1192 | _M_destroy(); |
| 1193 | } |
| 1194 | |
| 1195 | _Local_iterator_base(const _Local_iterator_base& __iter) |
| 1196 | : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket) |
| 1197 | , _M_bucket_count(__iter._M_bucket_count) |
| 1198 | { |
| 1199 | if (_M_bucket_count != size_t(-1)) |
| 1200 | _M_init(h: __iter._M_h()); |
| 1201 | } |
| 1202 | |
| 1203 | _Local_iterator_base& |
| 1204 | operator=(const _Local_iterator_base& __iter) |
| 1205 | { |
| 1206 | if (_M_bucket_count != size_t(-1)) |
| 1207 | _M_destroy(); |
| 1208 | this->_M_cur = __iter._M_cur; |
| 1209 | _M_bucket = __iter._M_bucket; |
| 1210 | _M_bucket_count = __iter._M_bucket_count; |
| 1211 | if (_M_bucket_count != size_t(-1)) |
| 1212 | _M_init(h: __iter._M_h()); |
| 1213 | return *this; |
| 1214 | } |
| 1215 | |
| 1216 | void |
| 1217 | _M_incr() |
| 1218 | { |
| 1219 | __node_iter_base::_M_incr(); |
| 1220 | if (this->_M_cur) |
| 1221 | { |
| 1222 | const auto __code = _M_h()(_ExtractKey{}(this->_M_cur->_M_v())); |
| 1223 | size_t __bkt = _RangeHash{}(__code, _M_bucket_count); |
| 1224 | if (__bkt != _M_bucket) |
| 1225 | this->_M_cur = nullptr; |
| 1226 | } |
| 1227 | } |
| 1228 | |
| 1229 | size_t _M_bucket = 0; |
| 1230 | size_t _M_bucket_count = -1; |
| 1231 | |
| 1232 | void |
| 1233 | _M_init(const _Hash& __h) |
| 1234 | { std::_Construct(std::__addressof(__hash_obj_storage::_M_u._M_h), __h); } |
| 1235 | |
| 1236 | void |
| 1237 | _M_destroy() { __hash_obj_storage::_M_u._M_h.~_Hash(); } |
| 1238 | |
| 1239 | const _Hash& |
| 1240 | _M_h() const { return __hash_obj_storage::_M_u._M_h; } |
| 1241 | |
| 1242 | public: |
| 1243 | size_t |
| 1244 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
| 1245 | }; |
| 1246 | |
| 1247 | /// local iterators |
| 1248 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1249 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1250 | bool __constant_iterators, bool __cache> |
| 1251 | struct _Local_iterator |
| 1252 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1253 | _Hash, _RangeHash, _Unused, __cache> |
| 1254 | { |
| 1255 | private: |
| 1256 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1257 | _Hash, _RangeHash, _Unused, __cache>; |
| 1258 | using __hash_code_base = typename __base_type::__hash_code_base; |
| 1259 | |
| 1260 | public: |
| 1261 | using value_type = _Value; |
| 1262 | using pointer = __conditional_t<__constant_iterators, |
| 1263 | const value_type*, value_type*>; |
| 1264 | using reference = __conditional_t<__constant_iterators, |
| 1265 | const value_type&, value_type&>; |
| 1266 | using difference_type = ptrdiff_t; |
| 1267 | using iterator_category = forward_iterator_tag; |
| 1268 | |
| 1269 | _Local_iterator() = default; |
| 1270 | |
| 1271 | _Local_iterator(const __hash_code_base& __base, |
| 1272 | _Hash_node<_Value, __cache>* __n, |
| 1273 | size_t __bkt, size_t __bkt_count) |
| 1274 | : __base_type(__base, __n, __bkt, __bkt_count) |
| 1275 | { } |
| 1276 | |
| 1277 | reference |
| 1278 | operator*() const |
| 1279 | { return this->_M_cur->_M_v(); } |
| 1280 | |
| 1281 | pointer |
| 1282 | operator->() const |
| 1283 | { return this->_M_cur->_M_valptr(); } |
| 1284 | |
| 1285 | _Local_iterator& |
| 1286 | operator++() |
| 1287 | { |
| 1288 | this->_M_incr(); |
| 1289 | return *this; |
| 1290 | } |
| 1291 | |
| 1292 | _Local_iterator |
| 1293 | operator++(int) |
| 1294 | { |
| 1295 | _Local_iterator __tmp(*this); |
| 1296 | this->_M_incr(); |
| 1297 | return __tmp; |
| 1298 | } |
| 1299 | }; |
| 1300 | |
| 1301 | /// local const_iterators |
| 1302 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1303 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1304 | bool __constant_iterators, bool __cache> |
| 1305 | struct _Local_const_iterator |
| 1306 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1307 | _Hash, _RangeHash, _Unused, __cache> |
| 1308 | { |
| 1309 | private: |
| 1310 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1311 | _Hash, _RangeHash, _Unused, __cache>; |
| 1312 | using __hash_code_base = typename __base_type::__hash_code_base; |
| 1313 | |
| 1314 | public: |
| 1315 | using value_type = _Value; |
| 1316 | using pointer = const value_type*; |
| 1317 | using reference = const value_type&; |
| 1318 | using difference_type = ptrdiff_t; |
| 1319 | using iterator_category = forward_iterator_tag; |
| 1320 | |
| 1321 | _Local_const_iterator() = default; |
| 1322 | |
| 1323 | _Local_const_iterator(const __hash_code_base& __base, |
| 1324 | _Hash_node<_Value, __cache>* __n, |
| 1325 | size_t __bkt, size_t __bkt_count) |
| 1326 | : __base_type(__base, __n, __bkt, __bkt_count) |
| 1327 | { } |
| 1328 | |
| 1329 | _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, |
| 1330 | _Hash, _RangeHash, _Unused, |
| 1331 | __constant_iterators, |
| 1332 | __cache>& __x) |
| 1333 | : __base_type(__x) |
| 1334 | { } |
| 1335 | |
| 1336 | reference |
| 1337 | operator*() const |
| 1338 | { return this->_M_cur->_M_v(); } |
| 1339 | |
| 1340 | pointer |
| 1341 | operator->() const |
| 1342 | { return this->_M_cur->_M_valptr(); } |
| 1343 | |
| 1344 | _Local_const_iterator& |
| 1345 | operator++() |
| 1346 | { |
| 1347 | this->_M_incr(); |
| 1348 | return *this; |
| 1349 | } |
| 1350 | |
| 1351 | _Local_const_iterator |
| 1352 | operator++(int) |
| 1353 | { |
| 1354 | _Local_const_iterator __tmp(*this); |
| 1355 | this->_M_incr(); |
| 1356 | return __tmp; |
| 1357 | } |
| 1358 | }; |
| 1359 | |
| 1360 | /** |
| 1361 | * Primary class template _Hashtable_base. |
| 1362 | * |
| 1363 | * Helper class adding management of _Equal functor to |
| 1364 | * _Hash_code_base type. |
| 1365 | * |
| 1366 | * Base class templates are: |
| 1367 | * - __detail::_Hash_code_base |
| 1368 | */ |
| 1369 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1370 | typename _Equal, typename _Hash, typename _RangeHash, |
| 1371 | typename _Unused, typename _Traits> |
| 1372 | struct _Hashtable_base |
| 1373 | : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
| 1374 | _Unused, _Traits::__hash_cached::value> |
| 1375 | { |
| 1376 | public: |
| 1377 | using key_type = _Key; |
| 1378 | using value_type = _Value; |
| 1379 | using key_equal = _Equal; |
| 1380 | using size_type = size_t; |
| 1381 | using difference_type = ptrdiff_t; |
| 1382 | |
| 1383 | using __traits_type = _Traits; |
| 1384 | using __hash_cached = typename __traits_type::__hash_cached; |
| 1385 | |
| 1386 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
| 1387 | _Hash, _RangeHash, _Unused, |
| 1388 | __hash_cached::value>; |
| 1389 | |
| 1390 | using __hash_code = typename __hash_code_base::__hash_code; |
| 1391 | |
| 1392 | protected: |
| 1393 | [[__no_unique_address__]] _Hashtable_ebo_helper<_Equal> _M_equal{}; |
| 1394 | |
| 1395 | _Hashtable_base() = default; |
| 1396 | |
| 1397 | _Hashtable_base(const _Hash& __hash, const _Equal& __eq) |
| 1398 | : __hash_code_base(__hash), _M_equal{__eq} |
| 1399 | { } |
| 1400 | |
| 1401 | bool |
| 1402 | _M_key_equals(const _Key& __k, |
| 1403 | const _Hash_node_value<_Value, |
| 1404 | __hash_cached::value>& __n) const |
| 1405 | { |
| 1406 | static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{}, |
| 1407 | "key equality predicate must be invocable with two arguments of " |
| 1408 | "key type" ); |
| 1409 | return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
| 1410 | } |
| 1411 | |
| 1412 | template<typename _Kt> |
| 1413 | bool |
| 1414 | _M_key_equals_tr(const _Kt& __k, |
| 1415 | const _Hash_node_value<_Value, |
| 1416 | __hash_cached::value>& __n) const |
| 1417 | { |
| 1418 | static_assert( |
| 1419 | __is_invocable<const _Equal&, const _Kt&, const _Key&>{}, |
| 1420 | "key equality predicate must be invocable with the argument type " |
| 1421 | "and the key type" ); |
| 1422 | return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
| 1423 | } |
| 1424 | |
| 1425 | #pragma GCC diagnostic push |
| 1426 | #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| 1427 | bool |
| 1428 | _M_equals(const _Key& __k, __hash_code __c, |
| 1429 | const _Hash_node_value<_Value, __hash_cached::value>& __n) const |
| 1430 | { |
| 1431 | if constexpr (__hash_cached::value) |
| 1432 | if (__c != __n._M_hash_code) |
| 1433 | return false; |
| 1434 | |
| 1435 | return _M_key_equals(__k, __n); |
| 1436 | } |
| 1437 | |
| 1438 | template<typename _Kt> |
| 1439 | bool |
| 1440 | _M_equals_tr(const _Kt& __k, __hash_code __c, |
| 1441 | const _Hash_node_value<_Value, |
| 1442 | __hash_cached::value>& __n) const |
| 1443 | { |
| 1444 | if constexpr (__hash_cached::value) |
| 1445 | if (__c != __n._M_hash_code) |
| 1446 | return false; |
| 1447 | |
| 1448 | return _M_key_equals_tr(__k, __n); |
| 1449 | } |
| 1450 | |
| 1451 | bool |
| 1452 | _M_node_equals( |
| 1453 | const _Hash_node_value<_Value, __hash_cached::value>& __lhn, |
| 1454 | const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const |
| 1455 | { |
| 1456 | if constexpr (__hash_cached::value) |
| 1457 | if (__lhn._M_hash_code != __rhn._M_hash_code) |
| 1458 | return false; |
| 1459 | |
| 1460 | return _M_key_equals(k: _ExtractKey{}(__lhn._M_v()), n: __rhn); |
| 1461 | } |
| 1462 | #pragma GCC diagnostic pop |
| 1463 | |
| 1464 | const _Equal& |
| 1465 | _M_eq() const noexcept { return _M_equal._M_obj; } |
| 1466 | }; |
| 1467 | |
| 1468 | /** |
| 1469 | * This type deals with all allocation and keeps an allocator instance. |
| 1470 | */ |
| 1471 | template<typename _NodeAlloc> |
| 1472 | struct _Hashtable_alloc |
| 1473 | { |
| 1474 | private: |
| 1475 | [[__no_unique_address__]] _Hashtable_ebo_helper<_NodeAlloc> _M_alloc{}; |
| 1476 | |
| 1477 | template<typename> |
| 1478 | struct __get_value_type; |
| 1479 | template<typename _Val, bool _Cache_hash_code> |
| 1480 | struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>> |
| 1481 | { using type = _Val; }; |
| 1482 | |
| 1483 | public: |
| 1484 | using __node_type = typename _NodeAlloc::value_type; |
| 1485 | using __node_alloc_type = _NodeAlloc; |
| 1486 | // Use __gnu_cxx to benefit from _S_always_equal and al. |
| 1487 | using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; |
| 1488 | |
| 1489 | using __value_alloc_traits = typename __node_alloc_traits::template |
| 1490 | rebind_traits<typename __get_value_type<__node_type>::type>; |
| 1491 | |
| 1492 | using __node_ptr = __node_type*; |
| 1493 | using __node_base = _Hash_node_base; |
| 1494 | using __node_base_ptr = __node_base*; |
| 1495 | using __buckets_alloc_type = |
| 1496 | __alloc_rebind<__node_alloc_type, __node_base_ptr>; |
| 1497 | using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>; |
| 1498 | using __buckets_ptr = __node_base_ptr*; |
| 1499 | |
| 1500 | _Hashtable_alloc() = default; |
| 1501 | _Hashtable_alloc(const _Hashtable_alloc&) = default; |
| 1502 | _Hashtable_alloc(_Hashtable_alloc&&) = default; |
| 1503 | |
| 1504 | template<typename _Alloc> |
| 1505 | _Hashtable_alloc(_Alloc&& __a) |
| 1506 | : _M_alloc{std::forward<_Alloc>(__a)} |
| 1507 | { } |
| 1508 | |
| 1509 | __node_alloc_type& |
| 1510 | _M_node_allocator() |
| 1511 | { return _M_alloc._M_obj; } |
| 1512 | |
| 1513 | const __node_alloc_type& |
| 1514 | _M_node_allocator() const |
| 1515 | { return _M_alloc._M_obj; } |
| 1516 | |
| 1517 | // Allocate a node and construct an element within it. |
| 1518 | template<typename... _Args> |
| 1519 | __node_ptr |
| 1520 | _M_allocate_node(_Args&&... __args); |
| 1521 | |
| 1522 | // Destroy the element within a node and deallocate the node. |
| 1523 | void |
| 1524 | _M_deallocate_node(__node_ptr __n); |
| 1525 | |
| 1526 | // Deallocate a node. |
| 1527 | void |
| 1528 | _M_deallocate_node_ptr(__node_ptr __n); |
| 1529 | |
| 1530 | // Deallocate the linked list of nodes pointed to by __n. |
| 1531 | // The elements within the nodes are destroyed. |
| 1532 | void |
| 1533 | _M_deallocate_nodes(__node_ptr __n); |
| 1534 | |
| 1535 | __buckets_ptr |
| 1536 | _M_allocate_buckets(size_t __bkt_count); |
| 1537 | |
| 1538 | void |
| 1539 | _M_deallocate_buckets(__buckets_ptr, size_t __bkt_count); |
| 1540 | }; |
| 1541 | |
| 1542 | // Definitions of class template _Hashtable_alloc's out-of-line member |
| 1543 | // functions. |
| 1544 | template<typename _NodeAlloc> |
| 1545 | template<typename... _Args> |
| 1546 | auto |
| 1547 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) |
| 1548 | -> __node_ptr |
| 1549 | { |
| 1550 | auto& __alloc = _M_node_allocator(); |
| 1551 | auto __nptr = __node_alloc_traits::allocate(__alloc, 1); |
| 1552 | __node_ptr __n = std::__to_address(__nptr); |
| 1553 | __try |
| 1554 | { |
| 1555 | ::new ((void*)__n) __node_type; |
| 1556 | __node_alloc_traits::construct(__alloc, __n->_M_valptr(), |
| 1557 | std::forward<_Args>(__args)...); |
| 1558 | return __n; |
| 1559 | } |
| 1560 | __catch(...) |
| 1561 | { |
| 1562 | __n->~__node_type(); |
| 1563 | __node_alloc_traits::deallocate(__alloc, __nptr, 1); |
| 1564 | __throw_exception_again; |
| 1565 | } |
| 1566 | } |
| 1567 | |
| 1568 | template<typename _NodeAlloc> |
| 1569 | void |
| 1570 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n) |
| 1571 | { |
| 1572 | __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); |
| 1573 | _M_deallocate_node_ptr(__n); |
| 1574 | } |
| 1575 | |
| 1576 | template<typename _NodeAlloc> |
| 1577 | void |
| 1578 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n) |
| 1579 | { |
| 1580 | using _Ptr = typename __node_alloc_traits::pointer; |
| 1581 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); |
| 1582 | __n->~__node_type(); |
| 1583 | __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); |
| 1584 | } |
| 1585 | |
| 1586 | template<typename _NodeAlloc> |
| 1587 | void |
| 1588 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n) |
| 1589 | { |
| 1590 | while (__n) |
| 1591 | { |
| 1592 | __node_ptr __tmp = __n; |
| 1593 | __n = __n->_M_next(); |
| 1594 | _M_deallocate_node(n: __tmp); |
| 1595 | } |
| 1596 | } |
| 1597 | |
| 1598 | template<typename _NodeAlloc> |
| 1599 | auto |
| 1600 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(size_t __bkt_count) |
| 1601 | -> __buckets_ptr |
| 1602 | { |
| 1603 | __buckets_alloc_type __alloc(_M_node_allocator()); |
| 1604 | |
| 1605 | auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count); |
| 1606 | __buckets_ptr __p = std::__to_address(__ptr); |
| 1607 | __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr)); |
| 1608 | return __p; |
| 1609 | } |
| 1610 | |
| 1611 | template<typename _NodeAlloc> |
| 1612 | void |
| 1613 | _Hashtable_alloc<_NodeAlloc>:: |
| 1614 | _M_deallocate_buckets(__buckets_ptr __bkts, size_t __bkt_count) |
| 1615 | { |
| 1616 | using _Ptr = typename __buckets_alloc_traits::pointer; |
| 1617 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); |
| 1618 | __buckets_alloc_type __alloc(_M_node_allocator()); |
| 1619 | __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count); |
| 1620 | } |
| 1621 | |
| 1622 | ///@} hashtable-detail |
| 1623 | } // namespace __detail |
| 1624 | /// @endcond |
| 1625 | _GLIBCXX_END_NAMESPACE_VERSION |
| 1626 | } // namespace std |
| 1627 | |
| 1628 | #endif // _HASHTABLE_POLICY_H |
| 1629 | |