1 | // Internal policy header for unordered_set and unordered_map -*- C++ -*- |
2 | |
3 | // Copyright (C) 2010-2024 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/hashtable_policy.h |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. |
28 | * @headername{unordered_map,unordered_set} |
29 | */ |
30 | |
31 | #ifndef _HASHTABLE_POLICY_H |
32 | #define _HASHTABLE_POLICY_H 1 |
33 | |
34 | #include <tuple> // for std::tuple, std::forward_as_tuple |
35 | #include <bits/functional_hash.h> // for __is_fast_hash |
36 | #include <bits/stl_algobase.h> // for std::min, std::is_permutation. |
37 | #include <bits/stl_pair.h> // for std::pair |
38 | #include <ext/aligned_buffer.h> // for __gnu_cxx::__aligned_buffer |
39 | #include <ext/alloc_traits.h> // for std::__alloc_rebind |
40 | #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits |
41 | |
42 | namespace std _GLIBCXX_VISIBILITY(default) |
43 | { |
44 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
45 | /// @cond undocumented |
46 | |
47 | template<typename _Key, typename _Value, typename _Alloc, |
48 | typename _ExtractKey, typename _Equal, |
49 | typename _Hash, typename _RangeHash, typename _Unused, |
50 | typename _RehashPolicy, typename _Traits> |
51 | class _Hashtable; |
52 | |
53 | namespace __detail |
54 | { |
55 | /** |
56 | * @defgroup hashtable-detail Base and Implementation Classes |
57 | * @ingroup unordered_associative_containers |
58 | * @{ |
59 | */ |
60 | template<typename _Key, typename _Value, typename _ExtractKey, |
61 | typename _Equal, typename _Hash, typename _RangeHash, |
62 | typename _Unused, typename _Traits> |
63 | struct _Hashtable_base; |
64 | |
65 | // Helper function: return distance(first, last) for forward |
66 | // iterators, or 0/1 for input iterators. |
67 | template<typename _Iterator> |
68 | inline typename std::iterator_traits<_Iterator>::difference_type |
69 | __distance_fw(_Iterator __first, _Iterator __last, |
70 | std::input_iterator_tag) |
71 | { return __first != __last ? 1 : 0; } |
72 | |
73 | template<typename _Iterator> |
74 | inline typename std::iterator_traits<_Iterator>::difference_type |
75 | __distance_fw(_Iterator __first, _Iterator __last, |
76 | std::forward_iterator_tag) |
77 | { return std::distance(__first, __last); } |
78 | |
79 | template<typename _Iterator> |
80 | inline typename std::iterator_traits<_Iterator>::difference_type |
81 | __distance_fw(_Iterator __first, _Iterator __last) |
82 | { return __distance_fw(__first, __last, |
83 | std::__iterator_category(__first)); } |
84 | |
85 | struct _Identity |
86 | { |
87 | template<typename _Tp> |
88 | _Tp&& |
89 | operator()(_Tp&& __x) const noexcept |
90 | { return std::forward<_Tp>(__x); } |
91 | }; |
92 | |
93 | struct _Select1st |
94 | { |
95 | template<typename _Pair> |
96 | struct __1st_type; |
97 | |
98 | template<typename _Tp, typename _Up> |
99 | struct __1st_type<pair<_Tp, _Up>> |
100 | { using type = _Tp; }; |
101 | |
102 | template<typename _Tp, typename _Up> |
103 | struct __1st_type<const pair<_Tp, _Up>> |
104 | { using type = const _Tp; }; |
105 | |
106 | template<typename _Pair> |
107 | struct __1st_type<_Pair&> |
108 | { using type = typename __1st_type<_Pair>::type&; }; |
109 | |
110 | template<typename _Tp> |
111 | typename __1st_type<_Tp>::type&& |
112 | operator()(_Tp&& __x) const noexcept |
113 | { return std::forward<_Tp>(__x).first; } |
114 | }; |
115 | |
116 | template<typename _ExKey, typename _Value> |
117 | struct _ConvertToValueType; |
118 | |
119 | template<typename _Value> |
120 | struct _ConvertToValueType<_Identity, _Value> |
121 | { |
122 | template<typename _Kt> |
123 | constexpr _Kt&& |
124 | operator()(_Kt&& __k) const noexcept |
125 | { return std::forward<_Kt>(__k); } |
126 | }; |
127 | |
128 | template<typename _Value> |
129 | struct _ConvertToValueType<_Select1st, _Value> |
130 | { |
131 | constexpr _Value&& |
132 | operator()(_Value&& __x) const noexcept |
133 | { return std::move(__x); } |
134 | |
135 | constexpr const _Value& |
136 | operator()(const _Value& __x) const noexcept |
137 | { return __x; } |
138 | |
139 | template<typename _Kt, typename _Val> |
140 | constexpr std::pair<_Kt, _Val>&& |
141 | operator()(std::pair<_Kt, _Val>&& __x) const noexcept |
142 | { return std::move(__x); } |
143 | |
144 | template<typename _Kt, typename _Val> |
145 | constexpr const std::pair<_Kt, _Val>& |
146 | operator()(const std::pair<_Kt, _Val>& __x) const noexcept |
147 | { return __x; } |
148 | }; |
149 | |
150 | template<typename _ExKey> |
151 | struct _NodeBuilder; |
152 | |
153 | template<> |
154 | struct _NodeBuilder<_Select1st> |
155 | { |
156 | template<typename _Kt, typename _Arg, typename _NodeGenerator> |
157 | static auto |
158 | _S_build(_Kt&& __k, _Arg&& __arg, const _NodeGenerator& __node_gen) |
159 | -> typename _NodeGenerator::__node_ptr |
160 | { |
161 | return __node_gen(std::forward<_Kt>(__k), |
162 | std::forward<_Arg>(__arg).second); |
163 | } |
164 | }; |
165 | |
166 | template<> |
167 | struct _NodeBuilder<_Identity> |
168 | { |
169 | template<typename _Kt, typename _Arg, typename _NodeGenerator> |
170 | static auto |
171 | _S_build(_Kt&& __k, _Arg&&, const _NodeGenerator& __node_gen) |
172 | -> typename _NodeGenerator::__node_ptr |
173 | { return __node_gen(std::forward<_Kt>(__k)); } |
174 | }; |
175 | |
176 | template<typename _HashtableAlloc, typename _NodePtr> |
177 | struct _NodePtrGuard |
178 | { |
179 | _HashtableAlloc& _M_h; |
180 | _NodePtr _M_ptr; |
181 | |
182 | ~_NodePtrGuard() |
183 | { |
184 | if (_M_ptr) |
185 | _M_h._M_deallocate_node_ptr(_M_ptr); |
186 | } |
187 | }; |
188 | |
189 | template<typename _NodeAlloc> |
190 | struct _Hashtable_alloc; |
191 | |
192 | // Functor recycling a pool of nodes and using allocation once the pool is |
193 | // empty. |
194 | template<typename _NodeAlloc> |
195 | struct _ReuseOrAllocNode |
196 | { |
197 | private: |
198 | using __node_alloc_type = _NodeAlloc; |
199 | using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; |
200 | using __node_alloc_traits = |
201 | typename __hashtable_alloc::__node_alloc_traits; |
202 | |
203 | public: |
204 | using __node_ptr = typename __hashtable_alloc::__node_ptr; |
205 | |
206 | _ReuseOrAllocNode(__node_ptr __nodes, __hashtable_alloc& __h) |
207 | : _M_nodes(__nodes), _M_h(__h) { } |
208 | _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; |
209 | |
210 | ~_ReuseOrAllocNode() |
211 | { _M_h._M_deallocate_nodes(_M_nodes); } |
212 | |
213 | template<typename... _Args> |
214 | __node_ptr |
215 | operator()(_Args&&... __args) const |
216 | { |
217 | if (!_M_nodes) |
218 | return _M_h._M_allocate_node(std::forward<_Args>(__args)...); |
219 | |
220 | __node_ptr __node = _M_nodes; |
221 | _M_nodes = _M_nodes->_M_next(); |
222 | __node->_M_nxt = nullptr; |
223 | auto& __a = _M_h._M_node_allocator(); |
224 | __node_alloc_traits::destroy(__a, __node->_M_valptr()); |
225 | _NodePtrGuard<__hashtable_alloc, __node_ptr> __guard { _M_h, __node }; |
226 | __node_alloc_traits::construct(__a, __node->_M_valptr(), |
227 | std::forward<_Args>(__args)...); |
228 | __guard._M_ptr = nullptr; |
229 | return __node; |
230 | } |
231 | |
232 | private: |
233 | mutable __node_ptr _M_nodes; |
234 | __hashtable_alloc& _M_h; |
235 | }; |
236 | |
237 | // Functor similar to the previous one but without any pool of nodes to |
238 | // recycle. |
239 | template<typename _NodeAlloc> |
240 | struct _AllocNode |
241 | { |
242 | private: |
243 | using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; |
244 | |
245 | public: |
246 | using __node_ptr = typename __hashtable_alloc::__node_ptr; |
247 | |
248 | _AllocNode(__hashtable_alloc& __h) |
249 | : _M_h(__h) { } |
250 | |
251 | template<typename... _Args> |
252 | __node_ptr |
253 | operator()(_Args&&... __args) const |
254 | { return _M_h._M_allocate_node(std::forward<_Args>(__args)...); } |
255 | |
256 | private: |
257 | __hashtable_alloc& _M_h; |
258 | }; |
259 | |
260 | // Auxiliary types used for all instantiations of _Hashtable nodes |
261 | // and iterators. |
262 | |
263 | /** |
264 | * struct _Hashtable_traits |
265 | * |
266 | * Important traits for hash tables. |
267 | * |
268 | * @tparam _Cache_hash_code Boolean value. True if the value of |
269 | * the hash function is stored along with the value. This is a |
270 | * time-space tradeoff. Storing it may improve lookup speed by |
271 | * reducing the number of times we need to call the _Hash or _Equal |
272 | * functors. |
273 | * |
274 | * @tparam _Constant_iterators Boolean value. True if iterator and |
275 | * const_iterator are both constant iterator types. This is true |
276 | * for unordered_set and unordered_multiset, false for |
277 | * unordered_map and unordered_multimap. |
278 | * |
279 | * @tparam _Unique_keys Boolean value. True if the return value |
280 | * of _Hashtable::count(k) is always at most one, false if it may |
281 | * be an arbitrary number. This is true for unordered_set and |
282 | * unordered_map, false for unordered_multiset and |
283 | * unordered_multimap. |
284 | */ |
285 | template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> |
286 | struct _Hashtable_traits |
287 | { |
288 | using __hash_cached = __bool_constant<_Cache_hash_code>; |
289 | using __constant_iterators = __bool_constant<_Constant_iterators>; |
290 | using __unique_keys = __bool_constant<_Unique_keys>; |
291 | }; |
292 | |
293 | /** |
294 | * struct _Hashtable_hash_traits |
295 | * |
296 | * Important traits for hash tables depending on associated hasher. |
297 | * |
298 | */ |
299 | template<typename _Hash> |
300 | struct _Hashtable_hash_traits |
301 | { |
302 | static constexpr std::size_t |
303 | __small_size_threshold() noexcept |
304 | { return std::__is_fast_hash<_Hash>::value ? 0 : 20; } |
305 | }; |
306 | |
307 | /** |
308 | * struct _Hash_node_base |
309 | * |
310 | * Nodes, used to wrap elements stored in the hash table. A policy |
311 | * template parameter of class template _Hashtable controls whether |
312 | * nodes also store a hash code. In some cases (e.g. strings) this |
313 | * may be a performance win. |
314 | */ |
315 | struct _Hash_node_base |
316 | { |
317 | _Hash_node_base* _M_nxt; |
318 | |
319 | _Hash_node_base() noexcept : _M_nxt() { } |
320 | |
321 | _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } |
322 | }; |
323 | |
324 | /** |
325 | * struct _Hash_node_value_base |
326 | * |
327 | * Node type with the value to store. |
328 | */ |
329 | template<typename _Value> |
330 | struct _Hash_node_value_base |
331 | { |
332 | typedef _Value value_type; |
333 | |
334 | __gnu_cxx::__aligned_buffer<_Value> _M_storage; |
335 | |
336 | [[__gnu__::__always_inline__]] |
337 | _Value* |
338 | _M_valptr() noexcept |
339 | { return _M_storage._M_ptr(); } |
340 | |
341 | [[__gnu__::__always_inline__]] |
342 | const _Value* |
343 | _M_valptr() const noexcept |
344 | { return _M_storage._M_ptr(); } |
345 | |
346 | [[__gnu__::__always_inline__]] |
347 | _Value& |
348 | _M_v() noexcept |
349 | { return *_M_valptr(); } |
350 | |
351 | [[__gnu__::__always_inline__]] |
352 | const _Value& |
353 | _M_v() const noexcept |
354 | { return *_M_valptr(); } |
355 | }; |
356 | |
357 | /** |
358 | * Primary template struct _Hash_node_code_cache. |
359 | */ |
360 | template<bool _Cache_hash_code> |
361 | struct _Hash_node_code_cache |
362 | { }; |
363 | |
364 | /** |
365 | * Specialization for node with cache, struct _Hash_node_code_cache. |
366 | */ |
367 | template<> |
368 | struct _Hash_node_code_cache<true> |
369 | { std::size_t _M_hash_code; }; |
370 | |
371 | template<typename _Value, bool _Cache_hash_code> |
372 | struct _Hash_node_value |
373 | : _Hash_node_value_base<_Value> |
374 | , _Hash_node_code_cache<_Cache_hash_code> |
375 | { }; |
376 | |
377 | /** |
378 | * Primary template struct _Hash_node. |
379 | */ |
380 | template<typename _Value, bool _Cache_hash_code> |
381 | struct _Hash_node |
382 | : _Hash_node_base |
383 | , _Hash_node_value<_Value, _Cache_hash_code> |
384 | { |
385 | _Hash_node* |
386 | _M_next() const noexcept |
387 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
388 | }; |
389 | |
390 | /// Base class for node iterators. |
391 | template<typename _Value, bool _Cache_hash_code> |
392 | struct _Node_iterator_base |
393 | { |
394 | using __node_type = _Hash_node<_Value, _Cache_hash_code>; |
395 | |
396 | __node_type* _M_cur; |
397 | |
398 | _Node_iterator_base() : _M_cur(nullptr) { } |
399 | _Node_iterator_base(__node_type* __p) noexcept |
400 | : _M_cur(__p) { } |
401 | |
402 | void |
403 | _M_incr() noexcept |
404 | { _M_cur = _M_cur->_M_next(); } |
405 | |
406 | friend bool |
407 | operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
408 | noexcept |
409 | { return __x._M_cur == __y._M_cur; } |
410 | |
411 | #if __cpp_impl_three_way_comparison < 201907L |
412 | friend bool |
413 | operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
414 | noexcept |
415 | { return __x._M_cur != __y._M_cur; } |
416 | #endif |
417 | }; |
418 | |
419 | /// Node iterators, used to iterate through all the hashtable. |
420 | template<typename _Value, bool __constant_iterators, bool __cache> |
421 | struct _Node_iterator |
422 | : public _Node_iterator_base<_Value, __cache> |
423 | { |
424 | private: |
425 | using __base_type = _Node_iterator_base<_Value, __cache>; |
426 | using __node_type = typename __base_type::__node_type; |
427 | |
428 | public: |
429 | using value_type = _Value; |
430 | using difference_type = std::ptrdiff_t; |
431 | using iterator_category = std::forward_iterator_tag; |
432 | |
433 | using pointer = __conditional_t<__constant_iterators, |
434 | const value_type*, value_type*>; |
435 | |
436 | using reference = __conditional_t<__constant_iterators, |
437 | const value_type&, value_type&>; |
438 | |
439 | _Node_iterator() = default; |
440 | |
441 | explicit |
442 | _Node_iterator(__node_type* __p) noexcept |
443 | : __base_type(__p) { } |
444 | |
445 | reference |
446 | operator*() const noexcept |
447 | { return this->_M_cur->_M_v(); } |
448 | |
449 | pointer |
450 | operator->() const noexcept |
451 | { return this->_M_cur->_M_valptr(); } |
452 | |
453 | _Node_iterator& |
454 | operator++() noexcept |
455 | { |
456 | this->_M_incr(); |
457 | return *this; |
458 | } |
459 | |
460 | _Node_iterator |
461 | operator++(int) noexcept |
462 | { |
463 | _Node_iterator __tmp(*this); |
464 | this->_M_incr(); |
465 | return __tmp; |
466 | } |
467 | }; |
468 | |
469 | /// Node const_iterators, used to iterate through all the hashtable. |
470 | template<typename _Value, bool __constant_iterators, bool __cache> |
471 | struct _Node_const_iterator |
472 | : public _Node_iterator_base<_Value, __cache> |
473 | { |
474 | private: |
475 | using __base_type = _Node_iterator_base<_Value, __cache>; |
476 | using __node_type = typename __base_type::__node_type; |
477 | |
478 | public: |
479 | typedef _Value value_type; |
480 | typedef std::ptrdiff_t difference_type; |
481 | typedef std::forward_iterator_tag iterator_category; |
482 | |
483 | typedef const value_type* pointer; |
484 | typedef const value_type& reference; |
485 | |
486 | _Node_const_iterator() = default; |
487 | |
488 | explicit |
489 | _Node_const_iterator(__node_type* __p) noexcept |
490 | : __base_type(__p) { } |
491 | |
492 | _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, |
493 | __cache>& __x) noexcept |
494 | : __base_type(__x._M_cur) { } |
495 | |
496 | reference |
497 | operator*() const noexcept |
498 | { return this->_M_cur->_M_v(); } |
499 | |
500 | pointer |
501 | operator->() const noexcept |
502 | { return this->_M_cur->_M_valptr(); } |
503 | |
504 | _Node_const_iterator& |
505 | operator++() noexcept |
506 | { |
507 | this->_M_incr(); |
508 | return *this; |
509 | } |
510 | |
511 | _Node_const_iterator |
512 | operator++(int) noexcept |
513 | { |
514 | _Node_const_iterator __tmp(*this); |
515 | this->_M_incr(); |
516 | return __tmp; |
517 | } |
518 | }; |
519 | |
520 | // Many of class template _Hashtable's template parameters are policy |
521 | // classes. These are defaults for the policies. |
522 | |
523 | /// Default range hashing function: use division to fold a large number |
524 | /// into the range [0, N). |
525 | struct _Mod_range_hashing |
526 | { |
527 | typedef std::size_t first_argument_type; |
528 | typedef std::size_t second_argument_type; |
529 | typedef std::size_t result_type; |
530 | |
531 | result_type |
532 | operator()(first_argument_type __num, |
533 | second_argument_type __den) const noexcept |
534 | { return __num % __den; } |
535 | }; |
536 | |
537 | /// Default ranged hash function H. In principle it should be a |
538 | /// function object composed from objects of type H1 and H2 such that |
539 | /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of |
540 | /// h1 and h2. So instead we'll just use a tag to tell class template |
541 | /// hashtable to do that composition. |
542 | struct _Default_ranged_hash { }; |
543 | |
544 | /// Default value for rehash policy. Bucket size is (usually) the |
545 | /// smallest prime that keeps the load factor small enough. |
546 | struct _Prime_rehash_policy |
547 | { |
548 | using __has_load_factor = true_type; |
549 | |
550 | _Prime_rehash_policy(float __z = 1.0) noexcept |
551 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
552 | |
553 | float |
554 | max_load_factor() const noexcept |
555 | { return _M_max_load_factor; } |
556 | |
557 | // Return a bucket size no smaller than n. |
558 | std::size_t |
559 | _M_next_bkt(std::size_t __n) const; |
560 | |
561 | // Return a bucket count appropriate for n elements |
562 | std::size_t |
563 | _M_bkt_for_elements(std::size_t __n) const |
564 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
565 | |
566 | // __n_bkt is current bucket count, __n_elt is current element count, |
567 | // and __n_ins is number of elements to be inserted. Do we need to |
568 | // increase bucket count? If so, return make_pair(true, n), where n |
569 | // is the new bucket count. If not, return make_pair(false, 0). |
570 | std::pair<bool, std::size_t> |
571 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
572 | std::size_t __n_ins) const; |
573 | |
574 | typedef std::size_t _State; |
575 | |
576 | _State |
577 | _M_state() const |
578 | { return _M_next_resize; } |
579 | |
580 | void |
581 | _M_reset() noexcept |
582 | { _M_next_resize = 0; } |
583 | |
584 | void |
585 | _M_reset(_State __state) |
586 | { _M_next_resize = __state; } |
587 | |
588 | static const std::size_t _S_growth_factor = 2; |
589 | |
590 | float _M_max_load_factor; |
591 | mutable std::size_t _M_next_resize; |
592 | }; |
593 | |
594 | /// Range hashing function assuming that second arg is a power of 2. |
595 | struct _Mask_range_hashing |
596 | { |
597 | typedef std::size_t first_argument_type; |
598 | typedef std::size_t second_argument_type; |
599 | typedef std::size_t result_type; |
600 | |
601 | result_type |
602 | operator()(first_argument_type __num, |
603 | second_argument_type __den) const noexcept |
604 | { return __num & (__den - 1); } |
605 | }; |
606 | |
607 | /// Compute closest power of 2 not less than __n |
608 | inline std::size_t |
609 | __clp2(std::size_t __n) noexcept |
610 | { |
611 | using __gnu_cxx::__int_traits; |
612 | // Equivalent to return __n ? std::bit_ceil(__n) : 0; |
613 | if (__n < 2) |
614 | return __n; |
615 | const unsigned __lz = sizeof(size_t) > sizeof(long) |
616 | ? __builtin_clzll(__n - 1ull) |
617 | : __builtin_clzl(__n - 1ul); |
618 | // Doing two shifts avoids undefined behaviour when __lz == 0. |
619 | return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1; |
620 | } |
621 | |
622 | /// Rehash policy providing power of 2 bucket numbers. Avoids modulo |
623 | /// operations. |
624 | struct _Power2_rehash_policy |
625 | { |
626 | using __has_load_factor = true_type; |
627 | |
628 | _Power2_rehash_policy(float __z = 1.0) noexcept |
629 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
630 | |
631 | float |
632 | max_load_factor() const noexcept |
633 | { return _M_max_load_factor; } |
634 | |
635 | // Return a bucket size no smaller than n (as long as n is not above the |
636 | // highest power of 2). |
637 | std::size_t |
638 | _M_next_bkt(std::size_t __n) noexcept |
639 | { |
640 | if (__n == 0) |
641 | // Special case on container 1st initialization with 0 bucket count |
642 | // hint. We keep _M_next_resize to 0 to make sure that next time we |
643 | // want to add an element allocation will take place. |
644 | return 1; |
645 | |
646 | const auto __max_width = std::min<size_t>(a: sizeof(size_t), b: 8); |
647 | const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); |
648 | std::size_t __res = __clp2(__n); |
649 | |
650 | if (__res == 0) |
651 | __res = __max_bkt; |
652 | else if (__res == 1) |
653 | // If __res is 1 we force it to 2 to make sure there will be an |
654 | // allocation so that nothing need to be stored in the initial |
655 | // single bucket |
656 | __res = 2; |
657 | |
658 | if (__res == __max_bkt) |
659 | // Set next resize to the max value so that we never try to rehash again |
660 | // as we already reach the biggest possible bucket number. |
661 | // Note that it might result in max_load_factor not being respected. |
662 | _M_next_resize = size_t(-1); |
663 | else |
664 | _M_next_resize |
665 | = __builtin_floor(__res * (double)_M_max_load_factor); |
666 | |
667 | return __res; |
668 | } |
669 | |
670 | // Return a bucket count appropriate for n elements |
671 | std::size_t |
672 | _M_bkt_for_elements(std::size_t __n) const noexcept |
673 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
674 | |
675 | // __n_bkt is current bucket count, __n_elt is current element count, |
676 | // and __n_ins is number of elements to be inserted. Do we need to |
677 | // increase bucket count? If so, return make_pair(true, n), where n |
678 | // is the new bucket count. If not, return make_pair(false, 0). |
679 | std::pair<bool, std::size_t> |
680 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
681 | std::size_t __n_ins) noexcept |
682 | { |
683 | if (__n_elt + __n_ins > _M_next_resize) |
684 | { |
685 | // If _M_next_resize is 0 it means that we have nothing allocated so |
686 | // far and that we start inserting elements. In this case we start |
687 | // with an initial bucket size of 11. |
688 | double __min_bkts |
689 | = std::max<std::size_t>(a: __n_elt + __n_ins, b: _M_next_resize ? 0 : 11) |
690 | / (double)_M_max_load_factor; |
691 | if (__min_bkts >= __n_bkt) |
692 | return { true, |
693 | _M_next_bkt(n: std::max<std::size_t>(a: __builtin_floor(__min_bkts) + 1, |
694 | b: __n_bkt * _S_growth_factor)) }; |
695 | |
696 | _M_next_resize |
697 | = __builtin_floor(__n_bkt * (double)_M_max_load_factor); |
698 | return { false, 0 }; |
699 | } |
700 | else |
701 | return { false, 0 }; |
702 | } |
703 | |
704 | typedef std::size_t _State; |
705 | |
706 | _State |
707 | _M_state() const noexcept |
708 | { return _M_next_resize; } |
709 | |
710 | void |
711 | _M_reset() noexcept |
712 | { _M_next_resize = 0; } |
713 | |
714 | void |
715 | _M_reset(_State __state) noexcept |
716 | { _M_next_resize = __state; } |
717 | |
718 | static const std::size_t _S_growth_factor = 2; |
719 | |
720 | float _M_max_load_factor; |
721 | std::size_t _M_next_resize; |
722 | }; |
723 | |
724 | template<typename _RehashPolicy> |
725 | struct _RehashStateGuard |
726 | { |
727 | _RehashPolicy* _M_guarded_obj; |
728 | typename _RehashPolicy::_State _M_prev_state; |
729 | |
730 | _RehashStateGuard(_RehashPolicy& __policy) |
731 | : _M_guarded_obj(std::__addressof(__policy)) |
732 | , _M_prev_state(__policy._M_state()) |
733 | { } |
734 | _RehashStateGuard(const _RehashStateGuard&) = delete; |
735 | |
736 | ~_RehashStateGuard() |
737 | { |
738 | if (_M_guarded_obj) |
739 | _M_guarded_obj->_M_reset(_M_prev_state); |
740 | } |
741 | }; |
742 | |
743 | // Base classes for std::_Hashtable. We define these base classes |
744 | // because in some cases we want to do different things depending on |
745 | // the value of a policy class. In some cases the policy class |
746 | // affects which member functions and nested typedefs are defined; |
747 | // we handle that by specializing base class templates. Several of |
748 | // the base class templates need to access other members of class |
749 | // template _Hashtable, so we use a variant of the "Curiously |
750 | // Recurring Template Pattern" (CRTP) technique. |
751 | |
752 | /** |
753 | * Primary class template _Map_base. |
754 | * |
755 | * If the hashtable has a value type of the form pair<const T1, T2> and |
756 | * a key extraction policy (_ExtractKey) that returns the first part |
757 | * of the pair, the hashtable gets a mapped_type typedef. If it |
758 | * satisfies those criteria and also has unique keys, then it also |
759 | * gets an operator[]. |
760 | */ |
761 | template<typename _Key, typename _Value, typename _Alloc, |
762 | typename _ExtractKey, typename _Equal, |
763 | typename _Hash, typename _RangeHash, typename _Unused, |
764 | typename _RehashPolicy, typename _Traits, |
765 | bool _Unique_keys = _Traits::__unique_keys::value> |
766 | struct _Map_base { }; |
767 | |
768 | /// Partial specialization, __unique_keys set to false, std::pair value type. |
769 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
770 | typename _Hash, typename _RangeHash, typename _Unused, |
771 | typename _RehashPolicy, typename _Traits> |
772 | struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
773 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
774 | { |
775 | using mapped_type = _Val; |
776 | }; |
777 | |
778 | /// Partial specialization, __unique_keys set to true. |
779 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
780 | typename _Hash, typename _RangeHash, typename _Unused, |
781 | typename _RehashPolicy, typename _Traits> |
782 | struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
783 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
784 | { |
785 | private: |
786 | using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>, |
787 | _Select1st, _Equal, _Hash, |
788 | _RangeHash, _Unused, |
789 | _Traits>; |
790 | |
791 | using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc, |
792 | _Select1st, _Equal, _Hash, _RangeHash, |
793 | _Unused, _RehashPolicy, _Traits>; |
794 | |
795 | using __hash_code = typename __hashtable_base::__hash_code; |
796 | |
797 | public: |
798 | using key_type = typename __hashtable_base::key_type; |
799 | using mapped_type = _Val; |
800 | |
801 | mapped_type& |
802 | operator[](const key_type& __k); |
803 | |
804 | mapped_type& |
805 | operator[](key_type&& __k); |
806 | |
807 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
808 | // DR 761. unordered_map needs an at() member function. |
809 | mapped_type& |
810 | at(const key_type& __k) |
811 | { |
812 | auto __ite = static_cast<__hashtable*>(this)->find(__k); |
813 | if (!__ite._M_cur) |
814 | __throw_out_of_range(__N("unordered_map::at" )); |
815 | return __ite->second; |
816 | } |
817 | |
818 | const mapped_type& |
819 | at(const key_type& __k) const |
820 | { |
821 | auto __ite = static_cast<const __hashtable*>(this)->find(__k); |
822 | if (!__ite._M_cur) |
823 | __throw_out_of_range(__N("unordered_map::at" )); |
824 | return __ite->second; |
825 | } |
826 | }; |
827 | |
828 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
829 | typename _Hash, typename _RangeHash, typename _Unused, |
830 | typename _RehashPolicy, typename _Traits> |
831 | auto |
832 | _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
833 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
834 | operator[](const key_type& __k) |
835 | -> mapped_type& |
836 | { |
837 | __hashtable* __h = static_cast<__hashtable*>(this); |
838 | __hash_code __code = __h->_M_hash_code(__k); |
839 | std::size_t __bkt = __h->_M_bucket_index(__code); |
840 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
841 | return __node->_M_v().second; |
842 | |
843 | typename __hashtable::_Scoped_node __node { |
844 | __h, |
845 | std::piecewise_construct, |
846 | std::tuple<const key_type&>(__k), |
847 | std::tuple<>() |
848 | }; |
849 | auto __pos |
850 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
851 | __node._M_node = nullptr; |
852 | return __pos->second; |
853 | } |
854 | |
855 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
856 | typename _Hash, typename _RangeHash, typename _Unused, |
857 | typename _RehashPolicy, typename _Traits> |
858 | auto |
859 | _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
860 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
861 | operator[](key_type&& __k) |
862 | -> mapped_type& |
863 | { |
864 | __hashtable* __h = static_cast<__hashtable*>(this); |
865 | __hash_code __code = __h->_M_hash_code(__k); |
866 | std::size_t __bkt = __h->_M_bucket_index(__code); |
867 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
868 | return __node->_M_v().second; |
869 | |
870 | typename __hashtable::_Scoped_node __node { |
871 | __h, |
872 | std::piecewise_construct, |
873 | std::forward_as_tuple(std::move(__k)), |
874 | std::tuple<>() |
875 | }; |
876 | auto __pos |
877 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
878 | __node._M_node = nullptr; |
879 | return __pos->second; |
880 | } |
881 | |
882 | // Partial specialization for unordered_map<const T, U>, see PR 104174. |
883 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
884 | typename _Hash, typename _RangeHash, typename _Unused, |
885 | typename _RehashPolicy, typename _Traits, bool __uniq> |
886 | struct _Map_base<const _Key, pair<const _Key, _Val>, |
887 | _Alloc, _Select1st, _Equal, _Hash, |
888 | _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
889 | : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash, |
890 | _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
891 | { }; |
892 | |
893 | /** |
894 | * Primary class template _Insert_base. |
895 | * |
896 | * Defines @c insert member functions appropriate to all _Hashtables. |
897 | */ |
898 | template<typename _Key, typename _Value, typename _Alloc, |
899 | typename _ExtractKey, typename _Equal, |
900 | typename _Hash, typename _RangeHash, typename _Unused, |
901 | typename _RehashPolicy, typename _Traits> |
902 | struct _Insert_base |
903 | { |
904 | protected: |
905 | using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
906 | _Equal, _Hash, _RangeHash, |
907 | _Unused, _Traits>; |
908 | |
909 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
910 | _Hash, _RangeHash, |
911 | _Unused, _RehashPolicy, _Traits>; |
912 | |
913 | using __hash_cached = typename _Traits::__hash_cached; |
914 | using __constant_iterators = typename _Traits::__constant_iterators; |
915 | |
916 | using __hashtable_alloc = _Hashtable_alloc< |
917 | __alloc_rebind<_Alloc, _Hash_node<_Value, |
918 | __hash_cached::value>>>; |
919 | |
920 | using value_type = typename __hashtable_base::value_type; |
921 | using size_type = typename __hashtable_base::size_type; |
922 | |
923 | using __unique_keys = typename _Traits::__unique_keys; |
924 | using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type; |
925 | using __node_gen_type = _AllocNode<__node_alloc_type>; |
926 | |
927 | __hashtable& |
928 | _M_conjure_hashtable() |
929 | { return *(static_cast<__hashtable*>(this)); } |
930 | |
931 | template<typename _InputIterator, typename _NodeGetter> |
932 | void |
933 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
934 | const _NodeGetter&, true_type __uks); |
935 | |
936 | template<typename _InputIterator, typename _NodeGetter> |
937 | void |
938 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
939 | const _NodeGetter&, false_type __uks); |
940 | |
941 | public: |
942 | using iterator = _Node_iterator<_Value, __constant_iterators::value, |
943 | __hash_cached::value>; |
944 | |
945 | using const_iterator = _Node_const_iterator<_Value, |
946 | __constant_iterators::value, |
947 | __hash_cached::value>; |
948 | |
949 | using __ireturn_type = __conditional_t<__unique_keys::value, |
950 | std::pair<iterator, bool>, |
951 | iterator>; |
952 | |
953 | __ireturn_type |
954 | insert(const value_type& __v) |
955 | { |
956 | __hashtable& __h = _M_conjure_hashtable(); |
957 | __node_gen_type __node_gen(__h); |
958 | return __h._M_insert(__v, __node_gen, __unique_keys{}); |
959 | } |
960 | |
961 | iterator |
962 | insert(const_iterator __hint, const value_type& __v) |
963 | { |
964 | __hashtable& __h = _M_conjure_hashtable(); |
965 | __node_gen_type __node_gen(__h); |
966 | return __h._M_insert(__hint, __v, __node_gen, __unique_keys{}); |
967 | } |
968 | |
969 | template<typename _KType, typename... _Args> |
970 | std::pair<iterator, bool> |
971 | try_emplace(const_iterator, _KType&& __k, _Args&&... __args) |
972 | { |
973 | __hashtable& __h = _M_conjure_hashtable(); |
974 | auto __code = __h._M_hash_code(__k); |
975 | std::size_t __bkt = __h._M_bucket_index(__code); |
976 | if (auto __node = __h._M_find_node(__bkt, __k, __code)) |
977 | return { iterator(__node), false }; |
978 | |
979 | typename __hashtable::_Scoped_node __node { |
980 | &__h, |
981 | std::piecewise_construct, |
982 | std::forward_as_tuple(std::forward<_KType>(__k)), |
983 | std::forward_as_tuple(std::forward<_Args>(__args)...) |
984 | }; |
985 | auto __it |
986 | = __h._M_insert_unique_node(__bkt, __code, __node._M_node); |
987 | __node._M_node = nullptr; |
988 | return { __it, true }; |
989 | } |
990 | |
991 | void |
992 | insert(initializer_list<value_type> __l) |
993 | { this->insert(__l.begin(), __l.end()); } |
994 | |
995 | template<typename _InputIterator> |
996 | void |
997 | insert(_InputIterator __first, _InputIterator __last) |
998 | { |
999 | __hashtable& __h = _M_conjure_hashtable(); |
1000 | __node_gen_type __node_gen(__h); |
1001 | return _M_insert_range(__first, __last, __node_gen, __unique_keys{}); |
1002 | } |
1003 | }; |
1004 | |
1005 | template<typename _Key, typename _Value, typename _Alloc, |
1006 | typename _ExtractKey, typename _Equal, |
1007 | typename _Hash, typename _RangeHash, typename _Unused, |
1008 | typename _RehashPolicy, typename _Traits> |
1009 | template<typename _InputIterator, typename _NodeGetter> |
1010 | void |
1011 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1012 | _Hash, _RangeHash, _Unused, |
1013 | _RehashPolicy, _Traits>:: |
1014 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
1015 | const _NodeGetter& __node_gen, true_type __uks) |
1016 | { |
1017 | __hashtable& __h = _M_conjure_hashtable(); |
1018 | for (; __first != __last; ++__first) |
1019 | __h._M_insert(*__first, __node_gen, __uks); |
1020 | } |
1021 | |
1022 | template<typename _Key, typename _Value, typename _Alloc, |
1023 | typename _ExtractKey, typename _Equal, |
1024 | typename _Hash, typename _RangeHash, typename _Unused, |
1025 | typename _RehashPolicy, typename _Traits> |
1026 | template<typename _InputIterator, typename _NodeGetter> |
1027 | void |
1028 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1029 | _Hash, _RangeHash, _Unused, |
1030 | _RehashPolicy, _Traits>:: |
1031 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
1032 | const _NodeGetter& __node_gen, false_type __uks) |
1033 | { |
1034 | using __rehash_guard_t = typename __hashtable::__rehash_guard_t; |
1035 | using __pair_type = std::pair<bool, std::size_t>; |
1036 | |
1037 | size_type __n_elt = __detail::__distance_fw(__first, __last); |
1038 | if (__n_elt == 0) |
1039 | return; |
1040 | |
1041 | __hashtable& __h = _M_conjure_hashtable(); |
1042 | __rehash_guard_t __rehash_guard(__h._M_rehash_policy); |
1043 | __pair_type __do_rehash |
1044 | = __h._M_rehash_policy._M_need_rehash(__h._M_bucket_count, |
1045 | __h._M_element_count, |
1046 | __n_elt); |
1047 | |
1048 | if (__do_rehash.first) |
1049 | __h._M_rehash(__do_rehash.second, __uks); |
1050 | |
1051 | __rehash_guard._M_guarded_obj = nullptr; |
1052 | for (; __first != __last; ++__first) |
1053 | __h._M_insert(*__first, __node_gen, __uks); |
1054 | } |
1055 | |
1056 | /** |
1057 | * Primary class template _Insert. |
1058 | * |
1059 | * Defines @c insert member functions that depend on _Hashtable policies, |
1060 | * via partial specializations. |
1061 | */ |
1062 | template<typename _Key, typename _Value, typename _Alloc, |
1063 | typename _ExtractKey, typename _Equal, |
1064 | typename _Hash, typename _RangeHash, typename _Unused, |
1065 | typename _RehashPolicy, typename _Traits, |
1066 | bool _Constant_iterators = _Traits::__constant_iterators::value> |
1067 | struct _Insert; |
1068 | |
1069 | /// Specialization. |
1070 | template<typename _Key, typename _Value, typename _Alloc, |
1071 | typename _ExtractKey, typename _Equal, |
1072 | typename _Hash, typename _RangeHash, typename _Unused, |
1073 | typename _RehashPolicy, typename _Traits> |
1074 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1075 | _Hash, _RangeHash, _Unused, |
1076 | _RehashPolicy, _Traits, true> |
1077 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1078 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
1079 | { |
1080 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
1081 | _Equal, _Hash, _RangeHash, _Unused, |
1082 | _RehashPolicy, _Traits>; |
1083 | |
1084 | using value_type = typename __base_type::value_type; |
1085 | using iterator = typename __base_type::iterator; |
1086 | using const_iterator = typename __base_type::const_iterator; |
1087 | using __ireturn_type = typename __base_type::__ireturn_type; |
1088 | |
1089 | using __unique_keys = typename __base_type::__unique_keys; |
1090 | using __hashtable = typename __base_type::__hashtable; |
1091 | using __node_gen_type = typename __base_type::__node_gen_type; |
1092 | |
1093 | using __base_type::insert; |
1094 | |
1095 | __ireturn_type |
1096 | insert(value_type&& __v) |
1097 | { |
1098 | __hashtable& __h = this->_M_conjure_hashtable(); |
1099 | __node_gen_type __node_gen(__h); |
1100 | return __h._M_insert(std::move(__v), __node_gen, __unique_keys{}); |
1101 | } |
1102 | |
1103 | iterator |
1104 | insert(const_iterator __hint, value_type&& __v) |
1105 | { |
1106 | __hashtable& __h = this->_M_conjure_hashtable(); |
1107 | __node_gen_type __node_gen(__h); |
1108 | return __h._M_insert(__hint, std::move(__v), __node_gen, |
1109 | __unique_keys{}); |
1110 | } |
1111 | }; |
1112 | |
1113 | /// Specialization. |
1114 | template<typename _Key, typename _Value, typename _Alloc, |
1115 | typename _ExtractKey, typename _Equal, |
1116 | typename _Hash, typename _RangeHash, typename _Unused, |
1117 | typename _RehashPolicy, typename _Traits> |
1118 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1119 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
1120 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1121 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
1122 | { |
1123 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
1124 | _Equal, _Hash, _RangeHash, _Unused, |
1125 | _RehashPolicy, _Traits>; |
1126 | using value_type = typename __base_type::value_type; |
1127 | using iterator = typename __base_type::iterator; |
1128 | using const_iterator = typename __base_type::const_iterator; |
1129 | |
1130 | using __unique_keys = typename __base_type::__unique_keys; |
1131 | using __hashtable = typename __base_type::__hashtable; |
1132 | using __ireturn_type = typename __base_type::__ireturn_type; |
1133 | |
1134 | using __base_type::insert; |
1135 | |
1136 | template<typename _Pair> |
1137 | using __is_cons = std::is_constructible<value_type, _Pair&&>; |
1138 | |
1139 | template<typename _Pair> |
1140 | using _IFcons = std::enable_if<__is_cons<_Pair>::value>; |
1141 | |
1142 | template<typename _Pair> |
1143 | using _IFconsp = typename _IFcons<_Pair>::type; |
1144 | |
1145 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1146 | __ireturn_type |
1147 | insert(_Pair&& __v) |
1148 | { |
1149 | __hashtable& __h = this->_M_conjure_hashtable(); |
1150 | return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v)); |
1151 | } |
1152 | |
1153 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1154 | iterator |
1155 | insert(const_iterator __hint, _Pair&& __v) |
1156 | { |
1157 | __hashtable& __h = this->_M_conjure_hashtable(); |
1158 | return __h._M_emplace(__hint, __unique_keys{}, |
1159 | std::forward<_Pair>(__v)); |
1160 | } |
1161 | }; |
1162 | |
1163 | template<typename _Policy> |
1164 | using __has_load_factor = typename _Policy::__has_load_factor; |
1165 | |
1166 | /** |
1167 | * Primary class template _Rehash_base. |
1168 | * |
1169 | * Give hashtable the max_load_factor functions and reserve iff the |
1170 | * rehash policy supports it. |
1171 | */ |
1172 | template<typename _Key, typename _Value, typename _Alloc, |
1173 | typename _ExtractKey, typename _Equal, |
1174 | typename _Hash, typename _RangeHash, typename _Unused, |
1175 | typename _RehashPolicy, typename _Traits, |
1176 | typename = |
1177 | __detected_or_t<false_type, __has_load_factor, _RehashPolicy>> |
1178 | struct _Rehash_base; |
1179 | |
1180 | /// Specialization when rehash policy doesn't provide load factor management. |
1181 | template<typename _Key, typename _Value, typename _Alloc, |
1182 | typename _ExtractKey, typename _Equal, |
1183 | typename _Hash, typename _RangeHash, typename _Unused, |
1184 | typename _RehashPolicy, typename _Traits> |
1185 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1186 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
1187 | false_type /* Has load factor */> |
1188 | { |
1189 | }; |
1190 | |
1191 | /// Specialization when rehash policy provide load factor management. |
1192 | template<typename _Key, typename _Value, typename _Alloc, |
1193 | typename _ExtractKey, typename _Equal, |
1194 | typename _Hash, typename _RangeHash, typename _Unused, |
1195 | typename _RehashPolicy, typename _Traits> |
1196 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1197 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
1198 | true_type /* Has load factor */> |
1199 | { |
1200 | private: |
1201 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
1202 | _Equal, _Hash, _RangeHash, _Unused, |
1203 | _RehashPolicy, _Traits>; |
1204 | |
1205 | public: |
1206 | float |
1207 | max_load_factor() const noexcept |
1208 | { |
1209 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1210 | return __this->__rehash_policy().max_load_factor(); |
1211 | } |
1212 | |
1213 | void |
1214 | max_load_factor(float __z) |
1215 | { |
1216 | __hashtable* __this = static_cast<__hashtable*>(this); |
1217 | __this->__rehash_policy(_RehashPolicy(__z)); |
1218 | } |
1219 | |
1220 | void |
1221 | reserve(std::size_t __n) |
1222 | { |
1223 | __hashtable* __this = static_cast<__hashtable*>(this); |
1224 | __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n)); |
1225 | } |
1226 | }; |
1227 | |
1228 | /** |
1229 | * Primary class template _Hashtable_ebo_helper. |
1230 | * |
1231 | * Helper class using EBO when it is not forbidden (the type is not |
1232 | * final) and when it is worth it (the type is empty.) |
1233 | */ |
1234 | template<int _Nm, typename _Tp, |
1235 | bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> |
1236 | struct _Hashtable_ebo_helper; |
1237 | |
1238 | /// Specialization using EBO. |
1239 | template<int _Nm, typename _Tp> |
1240 | struct _Hashtable_ebo_helper<_Nm, _Tp, true> |
1241 | : private _Tp |
1242 | { |
1243 | _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { } |
1244 | |
1245 | template<typename _OtherTp> |
1246 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1247 | : _Tp(std::forward<_OtherTp>(__tp)) |
1248 | { } |
1249 | |
1250 | const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); } |
1251 | _Tp& _M_get() { return static_cast<_Tp&>(*this); } |
1252 | }; |
1253 | |
1254 | /// Specialization not using EBO. |
1255 | template<int _Nm, typename _Tp> |
1256 | struct _Hashtable_ebo_helper<_Nm, _Tp, false> |
1257 | { |
1258 | _Hashtable_ebo_helper() = default; |
1259 | |
1260 | template<typename _OtherTp> |
1261 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1262 | : _M_tp(std::forward<_OtherTp>(__tp)) |
1263 | { } |
1264 | |
1265 | const _Tp& _M_cget() const { return _M_tp; } |
1266 | _Tp& _M_get() { return _M_tp; } |
1267 | |
1268 | private: |
1269 | _Tp _M_tp{}; |
1270 | }; |
1271 | |
1272 | /** |
1273 | * Primary class template _Local_iterator_base. |
1274 | * |
1275 | * Base class for local iterators, used to iterate within a bucket |
1276 | * but not between buckets. |
1277 | */ |
1278 | template<typename _Key, typename _Value, typename _ExtractKey, |
1279 | typename _Hash, typename _RangeHash, typename _Unused, |
1280 | bool __cache_hash_code> |
1281 | struct _Local_iterator_base; |
1282 | |
1283 | /** |
1284 | * Primary class template _Hash_code_base. |
1285 | * |
1286 | * Encapsulates two policy issues that aren't quite orthogonal. |
1287 | * (1) the difference between using a ranged hash function and using |
1288 | * the combination of a hash function and a range-hashing function. |
1289 | * In the former case we don't have such things as hash codes, so |
1290 | * we have a dummy type as placeholder. |
1291 | * (2) Whether or not we cache hash codes. Caching hash codes is |
1292 | * meaningless if we have a ranged hash function. |
1293 | * |
1294 | * We also put the key extraction objects here, for convenience. |
1295 | * Each specialization derives from one or more of the template |
1296 | * parameters to benefit from Ebo. This is important as this type |
1297 | * is inherited in some cases by the _Local_iterator_base type used |
1298 | * to implement local_iterator and const_local_iterator. As with |
1299 | * any iterator type we prefer to make it as small as possible. |
1300 | */ |
1301 | template<typename _Key, typename _Value, typename _ExtractKey, |
1302 | typename _Hash, typename _RangeHash, typename _Unused, |
1303 | bool __cache_hash_code> |
1304 | struct _Hash_code_base |
1305 | : private _Hashtable_ebo_helper<1, _Hash> |
1306 | { |
1307 | private: |
1308 | using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; |
1309 | |
1310 | // Gives the local iterator implementation access to _M_bucket_index(). |
1311 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1312 | _Hash, _RangeHash, _Unused, false>; |
1313 | |
1314 | public: |
1315 | typedef _Hash hasher; |
1316 | |
1317 | hasher |
1318 | hash_function() const |
1319 | { return _M_hash(); } |
1320 | |
1321 | protected: |
1322 | typedef std::size_t __hash_code; |
1323 | |
1324 | // We need the default constructor for the local iterators and _Hashtable |
1325 | // default constructor. |
1326 | _Hash_code_base() = default; |
1327 | |
1328 | _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { } |
1329 | |
1330 | __hash_code |
1331 | _M_hash_code(const _Key& __k) const |
1332 | { |
1333 | static_assert(__is_invocable<const _Hash&, const _Key&>{}, |
1334 | "hash function must be invocable with an argument of key type" ); |
1335 | return _M_hash()(__k); |
1336 | } |
1337 | |
1338 | template<typename _Kt> |
1339 | __hash_code |
1340 | _M_hash_code_tr(const _Kt& __k) const |
1341 | { |
1342 | static_assert(__is_invocable<const _Hash&, const _Kt&>{}, |
1343 | "hash function must be invocable with an argument of key type" ); |
1344 | return _M_hash()(__k); |
1345 | } |
1346 | |
1347 | __hash_code |
1348 | _M_hash_code(const _Hash_node_value<_Value, false>& __n) const |
1349 | { return _M_hash_code(_ExtractKey{}(__n._M_v())); } |
1350 | |
1351 | __hash_code |
1352 | _M_hash_code(const _Hash_node_value<_Value, true>& __n) const |
1353 | { return __n._M_hash_code; } |
1354 | |
1355 | std::size_t |
1356 | _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const |
1357 | { return _RangeHash{}(__c, __bkt_count); } |
1358 | |
1359 | std::size_t |
1360 | _M_bucket_index(const _Hash_node_value<_Value, false>& __n, |
1361 | std::size_t __bkt_count) const |
1362 | noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>())) |
1363 | && noexcept(declval<const _RangeHash&>()((__hash_code)0, |
1364 | (std::size_t)0)) ) |
1365 | { |
1366 | return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())), |
1367 | __bkt_count); |
1368 | } |
1369 | |
1370 | std::size_t |
1371 | _M_bucket_index(const _Hash_node_value<_Value, true>& __n, |
1372 | std::size_t __bkt_count) const |
1373 | noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0, |
1374 | (std::size_t)0)) ) |
1375 | { return _RangeHash{}(__n._M_hash_code, __bkt_count); } |
1376 | |
1377 | void |
1378 | _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const |
1379 | { } |
1380 | |
1381 | void |
1382 | _M_copy_code(_Hash_node_code_cache<false>&, |
1383 | const _Hash_node_code_cache<false>&) const |
1384 | { } |
1385 | |
1386 | void |
1387 | _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const |
1388 | { __n._M_hash_code = __c; } |
1389 | |
1390 | void |
1391 | _M_copy_code(_Hash_node_code_cache<true>& __to, |
1392 | const _Hash_node_code_cache<true>& __from) const |
1393 | { __to._M_hash_code = __from._M_hash_code; } |
1394 | |
1395 | void |
1396 | _M_swap(_Hash_code_base& __x) |
1397 | { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); } |
1398 | |
1399 | const _Hash& |
1400 | _M_hash() const { return __ebo_hash::_M_cget(); } |
1401 | }; |
1402 | |
1403 | /// Partial specialization used when nodes contain a cached hash code. |
1404 | template<typename _Key, typename _Value, typename _ExtractKey, |
1405 | typename _Hash, typename _RangeHash, typename _Unused> |
1406 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1407 | _Hash, _RangeHash, _Unused, true> |
1408 | : public _Node_iterator_base<_Value, true> |
1409 | { |
1410 | protected: |
1411 | using __base_node_iter = _Node_iterator_base<_Value, true>; |
1412 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1413 | _Hash, _RangeHash, _Unused, true>; |
1414 | |
1415 | _Local_iterator_base() = default; |
1416 | _Local_iterator_base(const __hash_code_base&, |
1417 | _Hash_node<_Value, true>* __p, |
1418 | std::size_t __bkt, std::size_t __bkt_count) |
1419 | : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1420 | { } |
1421 | |
1422 | void |
1423 | _M_incr() |
1424 | { |
1425 | __base_node_iter::_M_incr(); |
1426 | if (this->_M_cur) |
1427 | { |
1428 | std::size_t __bkt |
1429 | = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count); |
1430 | if (__bkt != _M_bucket) |
1431 | this->_M_cur = nullptr; |
1432 | } |
1433 | } |
1434 | |
1435 | std::size_t _M_bucket; |
1436 | std::size_t _M_bucket_count; |
1437 | |
1438 | public: |
1439 | std::size_t |
1440 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1441 | }; |
1442 | |
1443 | // Uninitialized storage for a _Hash_code_base. |
1444 | // This type is DefaultConstructible and Assignable even if the |
1445 | // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> |
1446 | // can be DefaultConstructible and Assignable. |
1447 | template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> |
1448 | struct _Hash_code_storage |
1449 | { |
1450 | __gnu_cxx::__aligned_buffer<_Tp> _M_storage; |
1451 | |
1452 | _Tp* |
1453 | _M_h() { return _M_storage._M_ptr(); } |
1454 | |
1455 | const _Tp* |
1456 | _M_h() const { return _M_storage._M_ptr(); } |
1457 | }; |
1458 | |
1459 | // Empty partial specialization for empty _Hash_code_base types. |
1460 | template<typename _Tp> |
1461 | struct _Hash_code_storage<_Tp, true> |
1462 | { |
1463 | static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); |
1464 | |
1465 | // As _Tp is an empty type there will be no bytes written/read through |
1466 | // the cast pointer, so no strict-aliasing violation. |
1467 | _Tp* |
1468 | _M_h() { return reinterpret_cast<_Tp*>(this); } |
1469 | |
1470 | const _Tp* |
1471 | _M_h() const { return reinterpret_cast<const _Tp*>(this); } |
1472 | }; |
1473 | |
1474 | template<typename _Key, typename _Value, typename _ExtractKey, |
1475 | typename _Hash, typename _RangeHash, typename _Unused> |
1476 | using __hash_code_for_local_iter |
1477 | = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, |
1478 | _Hash, _RangeHash, _Unused, false>>; |
1479 | |
1480 | // Partial specialization used when hash codes are not cached |
1481 | template<typename _Key, typename _Value, typename _ExtractKey, |
1482 | typename _Hash, typename _RangeHash, typename _Unused> |
1483 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1484 | _Hash, _RangeHash, _Unused, false> |
1485 | : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
1486 | _Unused> |
1487 | , _Node_iterator_base<_Value, false> |
1488 | { |
1489 | protected: |
1490 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1491 | _Hash, _RangeHash, _Unused, false>; |
1492 | using __node_iter_base = _Node_iterator_base<_Value, false>; |
1493 | |
1494 | _Local_iterator_base() : _M_bucket_count(-1) { } |
1495 | |
1496 | _Local_iterator_base(const __hash_code_base& __base, |
1497 | _Hash_node<_Value, false>* __p, |
1498 | std::size_t __bkt, std::size_t __bkt_count) |
1499 | : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1500 | { _M_init(__base); } |
1501 | |
1502 | ~_Local_iterator_base() |
1503 | { |
1504 | if (_M_bucket_count != size_t(-1)) |
1505 | _M_destroy(); |
1506 | } |
1507 | |
1508 | _Local_iterator_base(const _Local_iterator_base& __iter) |
1509 | : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket) |
1510 | , _M_bucket_count(__iter._M_bucket_count) |
1511 | { |
1512 | if (_M_bucket_count != size_t(-1)) |
1513 | _M_init(base: *__iter._M_h()); |
1514 | } |
1515 | |
1516 | _Local_iterator_base& |
1517 | operator=(const _Local_iterator_base& __iter) |
1518 | { |
1519 | if (_M_bucket_count != -1) |
1520 | _M_destroy(); |
1521 | this->_M_cur = __iter._M_cur; |
1522 | _M_bucket = __iter._M_bucket; |
1523 | _M_bucket_count = __iter._M_bucket_count; |
1524 | if (_M_bucket_count != -1) |
1525 | _M_init(base: *__iter._M_h()); |
1526 | return *this; |
1527 | } |
1528 | |
1529 | void |
1530 | _M_incr() |
1531 | { |
1532 | __node_iter_base::_M_incr(); |
1533 | if (this->_M_cur) |
1534 | { |
1535 | std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur, |
1536 | _M_bucket_count); |
1537 | if (__bkt != _M_bucket) |
1538 | this->_M_cur = nullptr; |
1539 | } |
1540 | } |
1541 | |
1542 | std::size_t _M_bucket; |
1543 | std::size_t _M_bucket_count; |
1544 | |
1545 | void |
1546 | _M_init(const __hash_code_base& __base) |
1547 | { ::new(this->_M_h()) __hash_code_base(__base); } |
1548 | |
1549 | void |
1550 | _M_destroy() { this->_M_h()->~__hash_code_base(); } |
1551 | |
1552 | public: |
1553 | std::size_t |
1554 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1555 | }; |
1556 | |
1557 | /// local iterators |
1558 | template<typename _Key, typename _Value, typename _ExtractKey, |
1559 | typename _Hash, typename _RangeHash, typename _Unused, |
1560 | bool __constant_iterators, bool __cache> |
1561 | struct _Local_iterator |
1562 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1563 | _Hash, _RangeHash, _Unused, __cache> |
1564 | { |
1565 | private: |
1566 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1567 | _Hash, _RangeHash, _Unused, __cache>; |
1568 | using __hash_code_base = typename __base_type::__hash_code_base; |
1569 | |
1570 | public: |
1571 | using value_type = _Value; |
1572 | using pointer = __conditional_t<__constant_iterators, |
1573 | const value_type*, value_type*>; |
1574 | using reference = __conditional_t<__constant_iterators, |
1575 | const value_type&, value_type&>; |
1576 | using difference_type = ptrdiff_t; |
1577 | using iterator_category = forward_iterator_tag; |
1578 | |
1579 | _Local_iterator() = default; |
1580 | |
1581 | _Local_iterator(const __hash_code_base& __base, |
1582 | _Hash_node<_Value, __cache>* __n, |
1583 | std::size_t __bkt, std::size_t __bkt_count) |
1584 | : __base_type(__base, __n, __bkt, __bkt_count) |
1585 | { } |
1586 | |
1587 | reference |
1588 | operator*() const |
1589 | { return this->_M_cur->_M_v(); } |
1590 | |
1591 | pointer |
1592 | operator->() const |
1593 | { return this->_M_cur->_M_valptr(); } |
1594 | |
1595 | _Local_iterator& |
1596 | operator++() |
1597 | { |
1598 | this->_M_incr(); |
1599 | return *this; |
1600 | } |
1601 | |
1602 | _Local_iterator |
1603 | operator++(int) |
1604 | { |
1605 | _Local_iterator __tmp(*this); |
1606 | this->_M_incr(); |
1607 | return __tmp; |
1608 | } |
1609 | }; |
1610 | |
1611 | /// local const_iterators |
1612 | template<typename _Key, typename _Value, typename _ExtractKey, |
1613 | typename _Hash, typename _RangeHash, typename _Unused, |
1614 | bool __constant_iterators, bool __cache> |
1615 | struct _Local_const_iterator |
1616 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1617 | _Hash, _RangeHash, _Unused, __cache> |
1618 | { |
1619 | private: |
1620 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1621 | _Hash, _RangeHash, _Unused, __cache>; |
1622 | using __hash_code_base = typename __base_type::__hash_code_base; |
1623 | |
1624 | public: |
1625 | typedef _Value value_type; |
1626 | typedef const value_type* pointer; |
1627 | typedef const value_type& reference; |
1628 | typedef std::ptrdiff_t difference_type; |
1629 | typedef std::forward_iterator_tag iterator_category; |
1630 | |
1631 | _Local_const_iterator() = default; |
1632 | |
1633 | _Local_const_iterator(const __hash_code_base& __base, |
1634 | _Hash_node<_Value, __cache>* __n, |
1635 | std::size_t __bkt, std::size_t __bkt_count) |
1636 | : __base_type(__base, __n, __bkt, __bkt_count) |
1637 | { } |
1638 | |
1639 | _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, |
1640 | _Hash, _RangeHash, _Unused, |
1641 | __constant_iterators, |
1642 | __cache>& __x) |
1643 | : __base_type(__x) |
1644 | { } |
1645 | |
1646 | reference |
1647 | operator*() const |
1648 | { return this->_M_cur->_M_v(); } |
1649 | |
1650 | pointer |
1651 | operator->() const |
1652 | { return this->_M_cur->_M_valptr(); } |
1653 | |
1654 | _Local_const_iterator& |
1655 | operator++() |
1656 | { |
1657 | this->_M_incr(); |
1658 | return *this; |
1659 | } |
1660 | |
1661 | _Local_const_iterator |
1662 | operator++(int) |
1663 | { |
1664 | _Local_const_iterator __tmp(*this); |
1665 | this->_M_incr(); |
1666 | return __tmp; |
1667 | } |
1668 | }; |
1669 | |
1670 | /** |
1671 | * Primary class template _Hashtable_base. |
1672 | * |
1673 | * Helper class adding management of _Equal functor to |
1674 | * _Hash_code_base type. |
1675 | * |
1676 | * Base class templates are: |
1677 | * - __detail::_Hash_code_base |
1678 | * - __detail::_Hashtable_ebo_helper |
1679 | */ |
1680 | template<typename _Key, typename _Value, typename _ExtractKey, |
1681 | typename _Equal, typename _Hash, typename _RangeHash, |
1682 | typename _Unused, typename _Traits> |
1683 | struct _Hashtable_base |
1684 | : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
1685 | _Unused, _Traits::__hash_cached::value>, |
1686 | private _Hashtable_ebo_helper<0, _Equal> |
1687 | { |
1688 | public: |
1689 | typedef _Key key_type; |
1690 | typedef _Value value_type; |
1691 | typedef _Equal key_equal; |
1692 | typedef std::size_t size_type; |
1693 | typedef std::ptrdiff_t difference_type; |
1694 | |
1695 | using __traits_type = _Traits; |
1696 | using __hash_cached = typename __traits_type::__hash_cached; |
1697 | |
1698 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1699 | _Hash, _RangeHash, _Unused, |
1700 | __hash_cached::value>; |
1701 | |
1702 | using __hash_code = typename __hash_code_base::__hash_code; |
1703 | |
1704 | private: |
1705 | using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; |
1706 | |
1707 | static bool |
1708 | _S_equals(__hash_code, const _Hash_node_code_cache<false>&) |
1709 | { return true; } |
1710 | |
1711 | static bool |
1712 | _S_node_equals(const _Hash_node_code_cache<false>&, |
1713 | const _Hash_node_code_cache<false>&) |
1714 | { return true; } |
1715 | |
1716 | static bool |
1717 | _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n) |
1718 | { return __c == __n._M_hash_code; } |
1719 | |
1720 | static bool |
1721 | _S_node_equals(const _Hash_node_code_cache<true>& __lhn, |
1722 | const _Hash_node_code_cache<true>& __rhn) |
1723 | { return __lhn._M_hash_code == __rhn._M_hash_code; } |
1724 | |
1725 | protected: |
1726 | _Hashtable_base() = default; |
1727 | |
1728 | _Hashtable_base(const _Hash& __hash, const _Equal& __eq) |
1729 | : __hash_code_base(__hash), _EqualEBO(__eq) |
1730 | { } |
1731 | |
1732 | bool |
1733 | _M_key_equals(const _Key& __k, |
1734 | const _Hash_node_value<_Value, |
1735 | __hash_cached::value>& __n) const |
1736 | { |
1737 | static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{}, |
1738 | "key equality predicate must be invocable with two arguments of " |
1739 | "key type" ); |
1740 | return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
1741 | } |
1742 | |
1743 | template<typename _Kt> |
1744 | bool |
1745 | _M_key_equals_tr(const _Kt& __k, |
1746 | const _Hash_node_value<_Value, |
1747 | __hash_cached::value>& __n) const |
1748 | { |
1749 | static_assert( |
1750 | __is_invocable<const _Equal&, const _Kt&, const _Key&>{}, |
1751 | "key equality predicate must be invocable with two arguments of " |
1752 | "key type" ); |
1753 | return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
1754 | } |
1755 | |
1756 | bool |
1757 | _M_equals(const _Key& __k, __hash_code __c, |
1758 | const _Hash_node_value<_Value, __hash_cached::value>& __n) const |
1759 | { return _S_equals(__c, __n) && _M_key_equals(__k, __n); } |
1760 | |
1761 | template<typename _Kt> |
1762 | bool |
1763 | _M_equals_tr(const _Kt& __k, __hash_code __c, |
1764 | const _Hash_node_value<_Value, |
1765 | __hash_cached::value>& __n) const |
1766 | { return _S_equals(__c, __n) && _M_key_equals_tr(__k, __n); } |
1767 | |
1768 | bool |
1769 | _M_node_equals( |
1770 | const _Hash_node_value<_Value, __hash_cached::value>& __lhn, |
1771 | const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const |
1772 | { |
1773 | return _S_node_equals(__lhn, __rhn) |
1774 | && _M_key_equals(k: _ExtractKey{}(__lhn._M_v()), n: __rhn); |
1775 | } |
1776 | |
1777 | void |
1778 | _M_swap(_Hashtable_base& __x) |
1779 | { |
1780 | __hash_code_base::_M_swap(__x); |
1781 | std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get()); |
1782 | } |
1783 | |
1784 | const _Equal& |
1785 | _M_eq() const { return _EqualEBO::_M_cget(); } |
1786 | }; |
1787 | |
1788 | /** |
1789 | * Primary class template _Equality. |
1790 | * |
1791 | * This is for implementing equality comparison for unordered |
1792 | * containers, per N3068, by John Lakos and Pablo Halpern. |
1793 | * Algorithmically, we follow closely the reference implementations |
1794 | * therein. |
1795 | */ |
1796 | template<typename _Key, typename _Value, typename _Alloc, |
1797 | typename _ExtractKey, typename _Equal, |
1798 | typename _Hash, typename _RangeHash, typename _Unused, |
1799 | typename _RehashPolicy, typename _Traits, |
1800 | bool _Unique_keys = _Traits::__unique_keys::value> |
1801 | struct _Equality; |
1802 | |
1803 | /// unordered_map and unordered_set specializations. |
1804 | template<typename _Key, typename _Value, typename _Alloc, |
1805 | typename _ExtractKey, typename _Equal, |
1806 | typename _Hash, typename _RangeHash, typename _Unused, |
1807 | typename _RehashPolicy, typename _Traits> |
1808 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1809 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
1810 | { |
1811 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1812 | _Hash, _RangeHash, _Unused, |
1813 | _RehashPolicy, _Traits>; |
1814 | |
1815 | bool |
1816 | _M_equal(const __hashtable&) const; |
1817 | }; |
1818 | |
1819 | template<typename _Key, typename _Value, typename _Alloc, |
1820 | typename _ExtractKey, typename _Equal, |
1821 | typename _Hash, typename _RangeHash, typename _Unused, |
1822 | typename _RehashPolicy, typename _Traits> |
1823 | bool |
1824 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1825 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
1826 | _M_equal(const __hashtable& __other) const |
1827 | { |
1828 | using __node_ptr = typename __hashtable::__node_ptr; |
1829 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1830 | if (__this->size() != __other.size()) |
1831 | return false; |
1832 | |
1833 | for (auto __x_n = __this->_M_begin(); __x_n; __x_n = __x_n->_M_next()) |
1834 | { |
1835 | std::size_t __ybkt = __other._M_bucket_index(*__x_n); |
1836 | auto __prev_n = __other._M_buckets[__ybkt]; |
1837 | if (!__prev_n) |
1838 | return false; |
1839 | |
1840 | for (__node_ptr __n = static_cast<__node_ptr>(__prev_n->_M_nxt);; |
1841 | __n = __n->_M_next()) |
1842 | { |
1843 | if (__n->_M_v() == __x_n->_M_v()) |
1844 | break; |
1845 | |
1846 | if (!__n->_M_nxt |
1847 | || __other._M_bucket_index(*__n->_M_next()) != __ybkt) |
1848 | return false; |
1849 | } |
1850 | } |
1851 | |
1852 | return true; |
1853 | } |
1854 | |
1855 | /// unordered_multiset and unordered_multimap specializations. |
1856 | template<typename _Key, typename _Value, typename _Alloc, |
1857 | typename _ExtractKey, typename _Equal, |
1858 | typename _Hash, typename _RangeHash, typename _Unused, |
1859 | typename _RehashPolicy, typename _Traits> |
1860 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1861 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
1862 | { |
1863 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1864 | _Hash, _RangeHash, _Unused, |
1865 | _RehashPolicy, _Traits>; |
1866 | |
1867 | bool |
1868 | _M_equal(const __hashtable&) const; |
1869 | }; |
1870 | |
1871 | template<typename _Key, typename _Value, typename _Alloc, |
1872 | typename _ExtractKey, typename _Equal, |
1873 | typename _Hash, typename _RangeHash, typename _Unused, |
1874 | typename _RehashPolicy, typename _Traits> |
1875 | bool |
1876 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1877 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>:: |
1878 | _M_equal(const __hashtable& __other) const |
1879 | { |
1880 | using __node_ptr = typename __hashtable::__node_ptr; |
1881 | using const_iterator = typename __hashtable::const_iterator; |
1882 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1883 | if (__this->size() != __other.size()) |
1884 | return false; |
1885 | |
1886 | for (auto __x_n = __this->_M_begin(); __x_n;) |
1887 | { |
1888 | std::size_t __x_count = 1; |
1889 | auto __x_n_end = __x_n->_M_next(); |
1890 | for (; __x_n_end |
1891 | && __this->key_eq()(_ExtractKey{}(__x_n->_M_v()), |
1892 | _ExtractKey{}(__x_n_end->_M_v())); |
1893 | __x_n_end = __x_n_end->_M_next()) |
1894 | ++__x_count; |
1895 | |
1896 | std::size_t __ybkt = __other._M_bucket_index(*__x_n); |
1897 | auto __y_prev_n = __other._M_buckets[__ybkt]; |
1898 | if (!__y_prev_n) |
1899 | return false; |
1900 | |
1901 | __node_ptr __y_n = static_cast<__node_ptr>(__y_prev_n->_M_nxt); |
1902 | for (;;) |
1903 | { |
1904 | if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()), |
1905 | _ExtractKey{}(__x_n->_M_v()))) |
1906 | break; |
1907 | |
1908 | auto __y_ref_n = __y_n; |
1909 | for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next()) |
1910 | if (!__other._M_node_equals(*__y_ref_n, *__y_n)) |
1911 | break; |
1912 | |
1913 | if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt) |
1914 | return false; |
1915 | } |
1916 | |
1917 | auto __y_n_end = __y_n; |
1918 | for (; __y_n_end; __y_n_end = __y_n_end->_M_next()) |
1919 | if (--__x_count == 0) |
1920 | break; |
1921 | |
1922 | if (__x_count != 0) |
1923 | return false; |
1924 | |
1925 | const_iterator __itx(__x_n), __itx_end(__x_n_end); |
1926 | const_iterator __ity(__y_n); |
1927 | if (!std::is_permutation(__itx, __itx_end, __ity)) |
1928 | return false; |
1929 | |
1930 | __x_n = __x_n_end; |
1931 | } |
1932 | return true; |
1933 | } |
1934 | |
1935 | /** |
1936 | * This type deals with all allocation and keeps an allocator instance |
1937 | * through inheritance to benefit from EBO when possible. |
1938 | */ |
1939 | template<typename _NodeAlloc> |
1940 | struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> |
1941 | { |
1942 | private: |
1943 | using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; |
1944 | |
1945 | template<typename> |
1946 | struct __get_value_type; |
1947 | template<typename _Val, bool _Cache_hash_code> |
1948 | struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>> |
1949 | { using type = _Val; }; |
1950 | |
1951 | public: |
1952 | using __node_type = typename _NodeAlloc::value_type; |
1953 | using __node_alloc_type = _NodeAlloc; |
1954 | // Use __gnu_cxx to benefit from _S_always_equal and al. |
1955 | using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; |
1956 | |
1957 | using __value_alloc_traits = typename __node_alloc_traits::template |
1958 | rebind_traits<typename __get_value_type<__node_type>::type>; |
1959 | |
1960 | using __node_ptr = __node_type*; |
1961 | using __node_base = _Hash_node_base; |
1962 | using __node_base_ptr = __node_base*; |
1963 | using __buckets_alloc_type = |
1964 | __alloc_rebind<__node_alloc_type, __node_base_ptr>; |
1965 | using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>; |
1966 | using __buckets_ptr = __node_base_ptr*; |
1967 | |
1968 | _Hashtable_alloc() = default; |
1969 | _Hashtable_alloc(const _Hashtable_alloc&) = default; |
1970 | _Hashtable_alloc(_Hashtable_alloc&&) = default; |
1971 | |
1972 | template<typename _Alloc> |
1973 | _Hashtable_alloc(_Alloc&& __a) |
1974 | : __ebo_node_alloc(std::forward<_Alloc>(__a)) |
1975 | { } |
1976 | |
1977 | __node_alloc_type& |
1978 | _M_node_allocator() |
1979 | { return __ebo_node_alloc::_M_get(); } |
1980 | |
1981 | const __node_alloc_type& |
1982 | _M_node_allocator() const |
1983 | { return __ebo_node_alloc::_M_cget(); } |
1984 | |
1985 | // Allocate a node and construct an element within it. |
1986 | template<typename... _Args> |
1987 | __node_ptr |
1988 | _M_allocate_node(_Args&&... __args); |
1989 | |
1990 | // Destroy the element within a node and deallocate the node. |
1991 | void |
1992 | _M_deallocate_node(__node_ptr __n); |
1993 | |
1994 | // Deallocate a node. |
1995 | void |
1996 | _M_deallocate_node_ptr(__node_ptr __n); |
1997 | |
1998 | // Deallocate the linked list of nodes pointed to by __n. |
1999 | // The elements within the nodes are destroyed. |
2000 | void |
2001 | _M_deallocate_nodes(__node_ptr __n); |
2002 | |
2003 | __buckets_ptr |
2004 | _M_allocate_buckets(std::size_t __bkt_count); |
2005 | |
2006 | void |
2007 | _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count); |
2008 | }; |
2009 | |
2010 | // Definitions of class template _Hashtable_alloc's out-of-line member |
2011 | // functions. |
2012 | template<typename _NodeAlloc> |
2013 | template<typename... _Args> |
2014 | auto |
2015 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) |
2016 | -> __node_ptr |
2017 | { |
2018 | auto& __alloc = _M_node_allocator(); |
2019 | auto __nptr = __node_alloc_traits::allocate(__alloc, 1); |
2020 | __node_ptr __n = std::__to_address(__nptr); |
2021 | __try |
2022 | { |
2023 | ::new ((void*)__n) __node_type; |
2024 | __node_alloc_traits::construct(__alloc, __n->_M_valptr(), |
2025 | std::forward<_Args>(__args)...); |
2026 | return __n; |
2027 | } |
2028 | __catch(...) |
2029 | { |
2030 | __n->~__node_type(); |
2031 | __node_alloc_traits::deallocate(__alloc, __nptr, 1); |
2032 | __throw_exception_again; |
2033 | } |
2034 | } |
2035 | |
2036 | template<typename _NodeAlloc> |
2037 | void |
2038 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n) |
2039 | { |
2040 | __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); |
2041 | _M_deallocate_node_ptr(__n); |
2042 | } |
2043 | |
2044 | template<typename _NodeAlloc> |
2045 | void |
2046 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n) |
2047 | { |
2048 | typedef typename __node_alloc_traits::pointer _Ptr; |
2049 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); |
2050 | __n->~__node_type(); |
2051 | __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); |
2052 | } |
2053 | |
2054 | template<typename _NodeAlloc> |
2055 | void |
2056 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n) |
2057 | { |
2058 | while (__n) |
2059 | { |
2060 | __node_ptr __tmp = __n; |
2061 | __n = __n->_M_next(); |
2062 | _M_deallocate_node(n: __tmp); |
2063 | } |
2064 | } |
2065 | |
2066 | template<typename _NodeAlloc> |
2067 | auto |
2068 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count) |
2069 | -> __buckets_ptr |
2070 | { |
2071 | __buckets_alloc_type __alloc(_M_node_allocator()); |
2072 | |
2073 | auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count); |
2074 | __buckets_ptr __p = std::__to_address(__ptr); |
2075 | __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr)); |
2076 | return __p; |
2077 | } |
2078 | |
2079 | template<typename _NodeAlloc> |
2080 | void |
2081 | _Hashtable_alloc<_NodeAlloc>:: |
2082 | _M_deallocate_buckets(__buckets_ptr __bkts, |
2083 | std::size_t __bkt_count) |
2084 | { |
2085 | typedef typename __buckets_alloc_traits::pointer _Ptr; |
2086 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); |
2087 | __buckets_alloc_type __alloc(_M_node_allocator()); |
2088 | __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count); |
2089 | } |
2090 | |
2091 | ///@} hashtable-detail |
2092 | } // namespace __detail |
2093 | /// @endcond |
2094 | _GLIBCXX_END_NAMESPACE_VERSION |
2095 | } // namespace std |
2096 | |
2097 | #endif // _HASHTABLE_POLICY_H |
2098 | |