| 1 | /* Prototype declarations for math functions; helper file for <math.h>. |
| 2 | Copyright (C) 1996-2025 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | /* NOTE: Because of the special way this file is used by <math.h>, this |
| 20 | file must NOT be protected from multiple inclusion as header files |
| 21 | usually are. |
| 22 | |
| 23 | This file provides prototype declarations for the math functions. |
| 24 | Most functions are declared using the macro: |
| 25 | |
| 26 | __MATHCALL (NAME,[_r], (ARGS...)); |
| 27 | |
| 28 | This means there is a function `NAME' returning `double' and a function |
| 29 | `NAMEf' returning `float'. Each place `_Mdouble_' appears in the |
| 30 | prototype, that is actually `double' in the prototype for `NAME' and |
| 31 | `float' in the prototype for `NAMEf'. Reentrant variant functions are |
| 32 | called `NAME_r' and `NAMEf_r'. |
| 33 | |
| 34 | Functions returning other types like `int' are declared using the macro: |
| 35 | |
| 36 | __MATHDECL (TYPE, NAME,[_r], (ARGS...)); |
| 37 | |
| 38 | This is just like __MATHCALL but for a function returning `TYPE' |
| 39 | instead of `_Mdouble_'. In all of these cases, there is still |
| 40 | both a `NAME' and a `NAMEf' that takes `float' arguments. |
| 41 | |
| 42 | Note that there must be no whitespace before the argument passed for |
| 43 | NAME, to make token pasting work with -traditional. */ |
| 44 | |
| 45 | #ifndef _MATH_H |
| 46 | # error "Never include <bits/mathcalls.h> directly; include <math.h> instead." |
| 47 | #endif |
| 48 | |
| 49 | |
| 50 | /* Trigonometric functions. */ |
| 51 | |
| 52 | /* Arc cosine of X. */ |
| 53 | __MATHCALL_VEC (acos,, (_Mdouble_ __x)); |
| 54 | /* Arc sine of X. */ |
| 55 | __MATHCALL_VEC (asin,, (_Mdouble_ __x)); |
| 56 | /* Arc tangent of X. */ |
| 57 | __MATHCALL_VEC (atan,, (_Mdouble_ __x)); |
| 58 | /* Arc tangent of Y/X. */ |
| 59 | __MATHCALL_VEC (atan2,, (_Mdouble_ __y, _Mdouble_ __x)); |
| 60 | |
| 61 | /* Cosine of X. */ |
| 62 | __MATHCALL_VEC (cos,, (_Mdouble_ __x)); |
| 63 | /* Sine of X. */ |
| 64 | __MATHCALL_VEC (sin,, (_Mdouble_ __x)); |
| 65 | /* Tangent of X. */ |
| 66 | __MATHCALL_VEC (tan,, (_Mdouble_ __x)); |
| 67 | |
| 68 | #if __GLIBC_USE (IEC_60559_FUNCS_EXT_C23) |
| 69 | /* Arc cosine of X, divided by pi. */ |
| 70 | __MATHCALL (acospi,, (_Mdouble_ __x)); |
| 71 | __MATHCALL_VEC (acospi,, (_Mdouble_ __x)); |
| 72 | /* Arc sine of X, divided by pi. */ |
| 73 | __MATHCALL (asinpi,, (_Mdouble_ __x)); |
| 74 | __MATHCALL_VEC (asinpi,, (_Mdouble_ __x)); |
| 75 | /* Arc tangent of X, divided by pi. */ |
| 76 | __MATHCALL (atanpi,, (_Mdouble_ __x)); |
| 77 | __MATHCALL_VEC (atanpi,, (_Mdouble_ __x)); |
| 78 | /* Arc tangent of Y/X, divided by pi. */ |
| 79 | __MATHCALL (atan2pi,, (_Mdouble_ __y, _Mdouble_ __x)); |
| 80 | __MATHCALL_VEC (atan2pi,, (_Mdouble_ __y, _Mdouble_ __x)); |
| 81 | |
| 82 | /* Cosine of pi * X. */ |
| 83 | __MATHCALL_VEC (cospi,, (_Mdouble_ __x)); |
| 84 | /* Sine of pi * X. */ |
| 85 | __MATHCALL_VEC (sinpi,, (_Mdouble_ __x)); |
| 86 | /* Tangent of pi * X. */ |
| 87 | __MATHCALL_VEC (tanpi,, (_Mdouble_ __x)); |
| 88 | #endif |
| 89 | |
| 90 | /* Hyperbolic functions. */ |
| 91 | |
| 92 | /* Hyperbolic cosine of X. */ |
| 93 | __MATHCALL_VEC (cosh,, (_Mdouble_ __x)); |
| 94 | /* Hyperbolic sine of X. */ |
| 95 | __MATHCALL_VEC (sinh,, (_Mdouble_ __x)); |
| 96 | /* Hyperbolic tangent of X. */ |
| 97 | __MATHCALL_VEC (tanh,, (_Mdouble_ __x)); |
| 98 | |
| 99 | #ifdef __USE_GNU |
| 100 | /* Cosine and sine of X. */ |
| 101 | __MATHDECL_VEC (void,sincos,, |
| 102 | (_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx)); |
| 103 | #endif |
| 104 | |
| 105 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 |
| 106 | /* Hyperbolic arc cosine of X. */ |
| 107 | __MATHCALL_VEC (acosh,, (_Mdouble_ __x)); |
| 108 | /* Hyperbolic arc sine of X. */ |
| 109 | __MATHCALL_VEC (asinh,, (_Mdouble_ __x)); |
| 110 | /* Hyperbolic arc tangent of X. */ |
| 111 | __MATHCALL_VEC (atanh,, (_Mdouble_ __x)); |
| 112 | #endif |
| 113 | |
| 114 | /* Exponential and logarithmic functions. */ |
| 115 | |
| 116 | /* Exponential function of X. */ |
| 117 | __MATHCALL_VEC (exp,, (_Mdouble_ __x)); |
| 118 | |
| 119 | /* Break VALUE into a normalized fraction and an integral power of 2. */ |
| 120 | __MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent)); |
| 121 | |
| 122 | /* X times (two to the EXP power). */ |
| 123 | __MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent)); |
| 124 | |
| 125 | /* Natural logarithm of X. */ |
| 126 | __MATHCALL_VEC (log,, (_Mdouble_ __x)); |
| 127 | |
| 128 | /* Base-ten logarithm of X. */ |
| 129 | __MATHCALL_VEC (log10,, (_Mdouble_ __x)); |
| 130 | |
| 131 | /* Break VALUE into integral and fractional parts. */ |
| 132 | __MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr)) __nonnull ((2)); |
| 133 | |
| 134 | #if __GLIBC_USE (IEC_60559_FUNCS_EXT_C23) |
| 135 | /* Compute exponent to base ten. */ |
| 136 | __MATHCALL_VEC (exp10,, (_Mdouble_ __x)); |
| 137 | |
| 138 | /* Return exp2(X) - 1. */ |
| 139 | __MATHCALL (exp2m1,, (_Mdouble_ __x)); |
| 140 | |
| 141 | /* Return exp10(X) - 1. */ |
| 142 | __MATHCALL (exp10m1,, (_Mdouble_ __x)); |
| 143 | |
| 144 | /* Return log2(1 + X). */ |
| 145 | __MATHCALL (log2p1,, (_Mdouble_ __x)); |
| 146 | |
| 147 | /* Return log10(1 + X). */ |
| 148 | __MATHCALL (log10p1,, (_Mdouble_ __x)); |
| 149 | |
| 150 | /* Return log(1 + X). */ |
| 151 | __MATHCALL_VEC (logp1,, (_Mdouble_ __x)); |
| 152 | #endif |
| 153 | |
| 154 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 |
| 155 | /* Return exp(X) - 1. */ |
| 156 | __MATHCALL_VEC (expm1,, (_Mdouble_ __x)); |
| 157 | |
| 158 | /* Return log(1 + X). */ |
| 159 | __MATHCALL_VEC (log1p,, (_Mdouble_ __x)); |
| 160 | |
| 161 | /* Return the base 2 signed integral exponent of X. */ |
| 162 | __MATHCALL (logb,, (_Mdouble_ __x)); |
| 163 | #endif |
| 164 | |
| 165 | #ifdef __USE_ISOC99 |
| 166 | /* Compute base-2 exponential of X. */ |
| 167 | __MATHCALL_VEC (exp2,, (_Mdouble_ __x)); |
| 168 | |
| 169 | /* Compute base-2 logarithm of X. */ |
| 170 | __MATHCALL_VEC (log2,, (_Mdouble_ __x)); |
| 171 | #endif |
| 172 | |
| 173 | |
| 174 | /* Power functions. */ |
| 175 | |
| 176 | /* Return X to the Y power. */ |
| 177 | __MATHCALL_VEC (pow,, (_Mdouble_ __x, _Mdouble_ __y)); |
| 178 | |
| 179 | /* Return the square root of X. */ |
| 180 | __MATHCALL (sqrt,, (_Mdouble_ __x)); |
| 181 | |
| 182 | #if defined __USE_XOPEN || defined __USE_ISOC99 |
| 183 | /* Return `sqrt(X*X + Y*Y)'. */ |
| 184 | __MATHCALL_VEC (hypot,, (_Mdouble_ __x, _Mdouble_ __y)); |
| 185 | #endif |
| 186 | |
| 187 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 |
| 188 | /* Return the cube root of X. */ |
| 189 | __MATHCALL_VEC (cbrt,, (_Mdouble_ __x)); |
| 190 | #endif |
| 191 | |
| 192 | #if __GLIBC_USE (IEC_60559_FUNCS_EXT_C23) |
| 193 | /* Return 1+X to the Y power. */ |
| 194 | __MATHCALL (compoundn,, (_Mdouble_ __x, long long int __y)); |
| 195 | |
| 196 | /* Return X to the Y power. */ |
| 197 | __MATHCALL (pown,, (_Mdouble_ __x, long long int __y)); |
| 198 | |
| 199 | /* Return X to the Y power. */ |
| 200 | __MATHCALL (powr,, (_Mdouble_ __x, _Mdouble_ __y)); |
| 201 | |
| 202 | /* Return the Yth root of X. */ |
| 203 | __MATHCALL (rootn,, (_Mdouble_ __x, long long int __y)); |
| 204 | |
| 205 | /* Return the reciprocal of the square root of X. */ |
| 206 | __MATHCALL (rsqrt,, (_Mdouble_ __x)); |
| 207 | #endif |
| 208 | |
| 209 | |
| 210 | /* Nearest integer, absolute value, and remainder functions. */ |
| 211 | |
| 212 | /* Smallest integral value not less than X. */ |
| 213 | __MATHCALLX (ceil,, (_Mdouble_ __x), (__const__)); |
| 214 | |
| 215 | /* Absolute value of X. */ |
| 216 | __MATHCALLX (fabs,, (_Mdouble_ __x), (__const__)); |
| 217 | |
| 218 | /* Largest integer not greater than X. */ |
| 219 | __MATHCALLX (floor,, (_Mdouble_ __x), (__const__)); |
| 220 | |
| 221 | /* Floating-point modulo remainder of X/Y. */ |
| 222 | __MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y)); |
| 223 | |
| 224 | #ifdef __USE_MISC |
| 225 | # if ((!defined __cplusplus \ |
| 226 | || __cplusplus < 201103L /* isinf conflicts with C++11. */ \ |
| 227 | || __MATH_DECLARING_DOUBLE == 0)) /* isinff or isinfl don't. */ \ |
| 228 | && !__MATH_DECLARING_FLOATN |
| 229 | /* Return 0 if VALUE is finite or NaN, +1 if it |
| 230 | is +Infinity, -1 if it is -Infinity. */ |
| 231 | __MATHDECL_ALIAS (int,isinf,, (_Mdouble_ __value), isinf) |
| 232 | __attribute__ ((__const__)); |
| 233 | # endif |
| 234 | |
| 235 | # if !__MATH_DECLARING_FLOATN |
| 236 | /* Return nonzero if VALUE is finite and not NaN. */ |
| 237 | __MATHDECL_ALIAS (int,finite,, (_Mdouble_ __value), finite) |
| 238 | __attribute__ ((__const__)); |
| 239 | |
| 240 | /* Return the remainder of X/Y. */ |
| 241 | __MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y)); |
| 242 | |
| 243 | |
| 244 | /* Return the fractional part of X after dividing out `ilogb (X)'. */ |
| 245 | __MATHCALL (significand,, (_Mdouble_ __x)); |
| 246 | # endif |
| 247 | |
| 248 | #endif /* Use misc. */ |
| 249 | |
| 250 | #ifdef __USE_ISOC99 |
| 251 | /* Return X with its signed changed to Y's. */ |
| 252 | __MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 253 | #endif |
| 254 | |
| 255 | #ifdef __USE_ISOC99 |
| 256 | /* Return representation of qNaN for double type. */ |
| 257 | __MATHCALL (nan,, (const char *__tagb)); |
| 258 | #endif |
| 259 | |
| 260 | |
| 261 | #if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K) |
| 262 | # if ((!defined __cplusplus \ |
| 263 | || __cplusplus < 201103L /* isnan conflicts with C++11. */ \ |
| 264 | || __MATH_DECLARING_DOUBLE == 0)) /* isnanf or isnanl don't. */ \ |
| 265 | && !__MATH_DECLARING_FLOATN |
| 266 | /* Return nonzero if VALUE is not a number. */ |
| 267 | __MATHDECL_ALIAS (int,isnan,, (_Mdouble_ __value), isnan) |
| 268 | __attribute__ ((__const__)); |
| 269 | # endif |
| 270 | #endif |
| 271 | |
| 272 | #if defined __USE_MISC || (defined __USE_XOPEN && __MATH_DECLARING_DOUBLE) |
| 273 | /* Bessel functions. */ |
| 274 | __MATHCALL (j0,, (_Mdouble_)); |
| 275 | __MATHCALL (j1,, (_Mdouble_)); |
| 276 | __MATHCALL (jn,, (int, _Mdouble_)); |
| 277 | __MATHCALL (y0,, (_Mdouble_)); |
| 278 | __MATHCALL (y1,, (_Mdouble_)); |
| 279 | __MATHCALL (yn,, (int, _Mdouble_)); |
| 280 | #endif |
| 281 | |
| 282 | |
| 283 | #if defined __USE_XOPEN || defined __USE_ISOC99 |
| 284 | /* Error and gamma functions. */ |
| 285 | __MATHCALL_VEC (erf,, (_Mdouble_)); |
| 286 | __MATHCALL_VEC (erfc,, (_Mdouble_)); |
| 287 | __MATHCALL (lgamma,, (_Mdouble_)); |
| 288 | #endif |
| 289 | |
| 290 | #ifdef __USE_ISOC99 |
| 291 | /* True gamma function. */ |
| 292 | __MATHCALL (tgamma,, (_Mdouble_)); |
| 293 | #endif |
| 294 | |
| 295 | #if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K) |
| 296 | # if !__MATH_DECLARING_FLOATN |
| 297 | /* Obsolete alias for `lgamma'. */ |
| 298 | __MATHCALL (gamma,, (_Mdouble_)); |
| 299 | # endif |
| 300 | #endif |
| 301 | |
| 302 | #ifdef __USE_MISC |
| 303 | /* Reentrant version of lgamma. This function uses the global variable |
| 304 | `signgam'. The reentrant version instead takes a pointer and stores |
| 305 | the value through it. */ |
| 306 | __MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp)); |
| 307 | #endif |
| 308 | |
| 309 | |
| 310 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 |
| 311 | /* Return the integer nearest X in the direction of the |
| 312 | prevailing rounding mode. */ |
| 313 | __MATHCALL (rint,, (_Mdouble_ __x)); |
| 314 | |
| 315 | /* Return X + epsilon if X < Y, X - epsilon if X > Y. */ |
| 316 | __MATHCALL (nextafter,, (_Mdouble_ __x, _Mdouble_ __y)); |
| 317 | # if defined __USE_ISOC99 && !defined __LDBL_COMPAT && !__MATH_DECLARING_FLOATN |
| 318 | __MATHCALL (nexttoward,, (_Mdouble_ __x, long double __y)); |
| 319 | # endif |
| 320 | |
| 321 | # if __GLIBC_USE (IEC_60559_BFP_EXT_C23) || __MATH_DECLARING_FLOATN |
| 322 | /* Return X - epsilon. */ |
| 323 | __MATHCALL (nextdown,, (_Mdouble_ __x)); |
| 324 | /* Return X + epsilon. */ |
| 325 | __MATHCALL (nextup,, (_Mdouble_ __x)); |
| 326 | # endif |
| 327 | |
| 328 | /* Return the remainder of integer division X / Y with infinite precision. */ |
| 329 | __MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y)); |
| 330 | |
| 331 | # ifdef __USE_ISOC99 |
| 332 | /* Return X times (2 to the Nth power). */ |
| 333 | __MATHCALL (scalbn,, (_Mdouble_ __x, int __n)); |
| 334 | # endif |
| 335 | |
| 336 | /* Return the binary exponent of X, which must be nonzero. */ |
| 337 | __MATHDECL (int,ilogb,, (_Mdouble_ __x)); |
| 338 | #endif |
| 339 | |
| 340 | #if __GLIBC_USE (IEC_60559_BFP_EXT_C23) || __MATH_DECLARING_FLOATN |
| 341 | /* Like ilogb, but returning long int. */ |
| 342 | __MATHDECL (long int, llogb,, (_Mdouble_ __x)); |
| 343 | #endif |
| 344 | |
| 345 | #ifdef __USE_ISOC99 |
| 346 | /* Return X times (2 to the Nth power). */ |
| 347 | __MATHCALL (scalbln,, (_Mdouble_ __x, long int __n)); |
| 348 | |
| 349 | /* Round X to integral value in floating-point format using current |
| 350 | rounding direction, but do not raise inexact exception. */ |
| 351 | __MATHCALL (nearbyint,, (_Mdouble_ __x)); |
| 352 | |
| 353 | /* Round X to nearest integral value, rounding halfway cases away from |
| 354 | zero. */ |
| 355 | __MATHCALLX (round,, (_Mdouble_ __x), (__const__)); |
| 356 | |
| 357 | /* Round X to the integral value in floating-point format nearest but |
| 358 | not larger in magnitude. */ |
| 359 | __MATHCALLX (trunc,, (_Mdouble_ __x), (__const__)); |
| 360 | |
| 361 | /* Compute remainder of X and Y and put in *QUO a value with sign of x/y |
| 362 | and magnitude congruent `mod 2^n' to the magnitude of the integral |
| 363 | quotient x/y, with n >= 3. */ |
| 364 | __MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo)); |
| 365 | |
| 366 | |
| 367 | /* Conversion functions. */ |
| 368 | |
| 369 | /* Round X to nearest integral value according to current rounding |
| 370 | direction. */ |
| 371 | __MATHDECL (long int,lrint,, (_Mdouble_ __x)); |
| 372 | __extension__ |
| 373 | __MATHDECL (long long int,llrint,, (_Mdouble_ __x)); |
| 374 | |
| 375 | /* Round X to nearest integral value, rounding halfway cases away from |
| 376 | zero. */ |
| 377 | __MATHDECL (long int,lround,, (_Mdouble_ __x)); |
| 378 | __extension__ |
| 379 | __MATHDECL (long long int,llround,, (_Mdouble_ __x)); |
| 380 | |
| 381 | |
| 382 | /* Return positive difference between X and Y. */ |
| 383 | __MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y)); |
| 384 | |
| 385 | # if !__MATH_DECLARING_FLOATN || defined __USE_GNU || !__GLIBC_USE (ISOC23) |
| 386 | /* Return maximum numeric value from X and Y. */ |
| 387 | __MATHCALLX (fmax,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 388 | |
| 389 | /* Return minimum numeric value from X and Y. */ |
| 390 | __MATHCALLX (fmin,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 391 | # endif |
| 392 | |
| 393 | /* Multiply-add function computed as a ternary operation. */ |
| 394 | __MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z)); |
| 395 | #endif /* Use ISO C99. */ |
| 396 | |
| 397 | #if __GLIBC_USE (IEC_60559_BFP_EXT_C23) || __MATH_DECLARING_FLOATN |
| 398 | /* Round X to nearest integer value, rounding halfway cases to even. */ |
| 399 | __MATHCALLX (roundeven,, (_Mdouble_ __x), (__const__)); |
| 400 | |
| 401 | /* Round X to nearest signed integer value, not raising inexact, with |
| 402 | control of rounding direction and width of result. */ |
| 403 | __MATHDECL (__intmax_t, fromfp,, (_Mdouble_ __x, int __round, |
| 404 | unsigned int __width)); |
| 405 | |
| 406 | /* Round X to nearest unsigned integer value, not raising inexact, |
| 407 | with control of rounding direction and width of result. */ |
| 408 | __MATHDECL (__uintmax_t, ufromfp,, (_Mdouble_ __x, int __round, |
| 409 | unsigned int __width)); |
| 410 | |
| 411 | /* Round X to nearest signed integer value, raising inexact for |
| 412 | non-integers, with control of rounding direction and width of |
| 413 | result. */ |
| 414 | __MATHDECL (__intmax_t, fromfpx,, (_Mdouble_ __x, int __round, |
| 415 | unsigned int __width)); |
| 416 | |
| 417 | /* Round X to nearest unsigned integer value, raising inexact for |
| 418 | non-integers, with control of rounding direction and width of |
| 419 | result. */ |
| 420 | __MATHDECL (__uintmax_t, ufromfpx,, (_Mdouble_ __x, int __round, |
| 421 | unsigned int __width)); |
| 422 | |
| 423 | /* Canonicalize floating-point representation. */ |
| 424 | __MATHDECL_1 (int, canonicalize,, (_Mdouble_ *__cx, const _Mdouble_ *__x)); |
| 425 | #endif |
| 426 | |
| 427 | #if (__GLIBC_USE (IEC_60559_BFP_EXT) \ |
| 428 | || (__MATH_DECLARING_FLOATN \ |
| 429 | && (defined __USE_GNU || !__GLIBC_USE (ISOC23)))) |
| 430 | /* Return value with maximum magnitude. */ |
| 431 | __MATHCALLX (fmaxmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 432 | |
| 433 | /* Return value with minimum magnitude. */ |
| 434 | __MATHCALLX (fminmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 435 | #endif |
| 436 | |
| 437 | #if __GLIBC_USE (ISOC23) |
| 438 | /* Return maximum value from X and Y. */ |
| 439 | __MATHCALLX (fmaximum,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 440 | |
| 441 | /* Return minimum value from X and Y. */ |
| 442 | __MATHCALLX (fminimum,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 443 | |
| 444 | /* Return maximum numeric value from X and Y. */ |
| 445 | __MATHCALLX (fmaximum_num,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 446 | |
| 447 | /* Return minimum numeric value from X and Y. */ |
| 448 | __MATHCALLX (fminimum_num,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 449 | |
| 450 | /* Return value with maximum magnitude. */ |
| 451 | __MATHCALLX (fmaximum_mag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 452 | |
| 453 | /* Return value with minimum magnitude. */ |
| 454 | __MATHCALLX (fminimum_mag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 455 | |
| 456 | /* Return numeric value with maximum magnitude. */ |
| 457 | __MATHCALLX (fmaximum_mag_num,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 458 | |
| 459 | /* Return numeric value with minimum magnitude. */ |
| 460 | __MATHCALLX (fminimum_mag_num,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); |
| 461 | #endif |
| 462 | |
| 463 | #if __GLIBC_USE (IEC_60559_EXT) || __MATH_DECLARING_FLOATN |
| 464 | /* Total order operation. */ |
| 465 | __MATHDECL_1 (int, totalorder,, (const _Mdouble_ *__x, |
| 466 | const _Mdouble_ *__y)) |
| 467 | __attribute_pure__; |
| 468 | |
| 469 | /* Total order operation on absolute values. */ |
| 470 | __MATHDECL_1 (int, totalordermag,, (const _Mdouble_ *__x, |
| 471 | const _Mdouble_ *__y)) |
| 472 | __attribute_pure__; |
| 473 | |
| 474 | /* Get NaN payload. */ |
| 475 | __MATHCALL (getpayload,, (const _Mdouble_ *__x)); |
| 476 | |
| 477 | /* Set quiet NaN payload. */ |
| 478 | __MATHDECL_1 (int, setpayload,, (_Mdouble_ *__x, _Mdouble_ __payload)); |
| 479 | |
| 480 | /* Set signaling NaN payload. */ |
| 481 | __MATHDECL_1 (int, setpayloadsig,, (_Mdouble_ *__x, _Mdouble_ __payload)); |
| 482 | #endif |
| 483 | |
| 484 | #if (defined __USE_MISC || (defined __USE_XOPEN_EXTENDED \ |
| 485 | && __MATH_DECLARING_DOUBLE \ |
| 486 | && !defined __USE_XOPEN2K8)) \ |
| 487 | && !__MATH_DECLARING_FLOATN |
| 488 | /* Return X times (2 to the Nth power). */ |
| 489 | __MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n)); |
| 490 | #endif |
| 491 | |