| 1 | /* (c) Magnus Auvinen. See licence.txt in the root of the distribution for more information. */ |
| 2 | /* If you are missing that file, acquire a complete release at teeworlds.com. */ |
| 3 | #ifndef BASE_VMATH_H |
| 4 | #define BASE_VMATH_H |
| 5 | |
| 6 | #include "math.h" |
| 7 | |
| 8 | #include <cmath> |
| 9 | #include <cstdint> |
| 10 | |
| 11 | // ------------------------------------ |
| 12 | |
| 13 | template<Numeric T> |
| 14 | class vector2_base |
| 15 | { |
| 16 | public: |
| 17 | union |
| 18 | { |
| 19 | T x, u; |
| 20 | }; |
| 21 | union |
| 22 | { |
| 23 | T y, v; |
| 24 | }; |
| 25 | |
| 26 | constexpr vector2_base() = default; |
| 27 | constexpr vector2_base(T nx, T ny) : |
| 28 | x(nx), y(ny) |
| 29 | { |
| 30 | } |
| 31 | |
| 32 | constexpr vector2_base operator-() const { return vector2_base(-x, -y); } |
| 33 | constexpr vector2_base operator-(const vector2_base &vec) const { return vector2_base(x - vec.x, y - vec.y); } |
| 34 | constexpr vector2_base operator+(const vector2_base &vec) const { return vector2_base(x + vec.x, y + vec.y); } |
| 35 | constexpr vector2_base operator*(const T rhs) const { return vector2_base(x * rhs, y * rhs); } |
| 36 | constexpr vector2_base operator*(const vector2_base &vec) const { return vector2_base(x * vec.x, y * vec.y); } |
| 37 | constexpr vector2_base operator/(const T rhs) const { return vector2_base(x / rhs, y / rhs); } |
| 38 | constexpr vector2_base operator/(const vector2_base &vec) const { return vector2_base(x / vec.x, y / vec.y); } |
| 39 | |
| 40 | constexpr vector2_base &operator+=(const vector2_base &vec) |
| 41 | { |
| 42 | x += vec.x; |
| 43 | y += vec.y; |
| 44 | return *this; |
| 45 | } |
| 46 | constexpr vector2_base &operator-=(const vector2_base &vec) |
| 47 | { |
| 48 | x -= vec.x; |
| 49 | y -= vec.y; |
| 50 | return *this; |
| 51 | } |
| 52 | constexpr vector2_base &operator*=(const T rhs) |
| 53 | { |
| 54 | x *= rhs; |
| 55 | y *= rhs; |
| 56 | return *this; |
| 57 | } |
| 58 | constexpr vector2_base &operator*=(const vector2_base &vec) |
| 59 | { |
| 60 | x *= vec.x; |
| 61 | y *= vec.y; |
| 62 | return *this; |
| 63 | } |
| 64 | constexpr vector2_base &operator/=(const T rhs) |
| 65 | { |
| 66 | x /= rhs; |
| 67 | y /= rhs; |
| 68 | return *this; |
| 69 | } |
| 70 | constexpr vector2_base &operator/=(const vector2_base &vec) |
| 71 | { |
| 72 | x /= vec.x; |
| 73 | y /= vec.y; |
| 74 | return *this; |
| 75 | } |
| 76 | |
| 77 | constexpr bool operator==(const vector2_base &vec) const { return x == vec.x && y == vec.y; } // TODO: do this with an eps instead |
| 78 | constexpr bool operator!=(const vector2_base &vec) const { return x != vec.x || y != vec.y; } |
| 79 | |
| 80 | constexpr T &operator[](const int index) { return index ? y : x; } |
| 81 | constexpr const T &operator[](const int index) const { return index ? y : x; } |
| 82 | }; |
| 83 | |
| 84 | template<Numeric T> |
| 85 | constexpr vector2_base<T> rotate(const vector2_base<T> &a, float angle) |
| 86 | { |
| 87 | angle = angle * pi / 180.0f; |
| 88 | float s = std::sin(x: angle); |
| 89 | float c = std::cos(x: angle); |
| 90 | return vector2_base<T>(static_cast<T>(c * a.x - s * a.y), static_cast<T>(s * a.x + c * a.y)); |
| 91 | } |
| 92 | |
| 93 | template<Numeric T> |
| 94 | inline T distance(const vector2_base<T> a, const vector2_base<T> &b) |
| 95 | { |
| 96 | return length(a - b); |
| 97 | } |
| 98 | |
| 99 | template<Numeric T> |
| 100 | constexpr T dot(const vector2_base<T> a, const vector2_base<T> &b) |
| 101 | { |
| 102 | return a.x * b.x + a.y * b.y; |
| 103 | } |
| 104 | |
| 105 | template<std::floating_point T> |
| 106 | inline float length(const vector2_base<T> &a) |
| 107 | { |
| 108 | return std::sqrt(dot(a, a)); |
| 109 | } |
| 110 | |
| 111 | template<std::integral T> |
| 112 | inline float length(const vector2_base<T> &a) |
| 113 | { |
| 114 | return std::sqrt(x: static_cast<float>(dot(a, a))); |
| 115 | } |
| 116 | |
| 117 | constexpr float length_squared(const vector2_base<float> &a) |
| 118 | { |
| 119 | return dot(a, b: a); |
| 120 | } |
| 121 | |
| 122 | constexpr float angle(const vector2_base<float> &a) |
| 123 | { |
| 124 | if(a.x == 0 && a.y == 0) |
| 125 | return 0.0f; |
| 126 | else if(a.x == 0) |
| 127 | return a.y < 0 ? -pi / 2 : pi / 2; |
| 128 | float result = std::atan(x: a.y / a.x); |
| 129 | if(a.x < 0) |
| 130 | result = result + pi; |
| 131 | return result; |
| 132 | } |
| 133 | |
| 134 | template<Numeric T> |
| 135 | constexpr vector2_base<T> normalize_pre_length(const vector2_base<T> &v, T len) |
| 136 | { |
| 137 | if(len == 0) |
| 138 | return vector2_base<T>(); |
| 139 | return vector2_base<T>(v.x / len, v.y / len); |
| 140 | } |
| 141 | |
| 142 | inline vector2_base<float> normalize(const vector2_base<float> &v) |
| 143 | { |
| 144 | float divisor = length(a: v); |
| 145 | if(divisor == 0.0f) |
| 146 | return vector2_base<float>(0.0f, 0.0f); |
| 147 | float l = 1.0f / divisor; |
| 148 | return vector2_base<float>(v.x * l, v.y * l); |
| 149 | } |
| 150 | |
| 151 | inline vector2_base<float> direction(float angle) |
| 152 | { |
| 153 | return vector2_base<float>(std::cos(x: angle), std::sin(x: angle)); |
| 154 | } |
| 155 | |
| 156 | inline vector2_base<float> random_direction() |
| 157 | { |
| 158 | return direction(angle: random_angle()); |
| 159 | } |
| 160 | |
| 161 | typedef vector2_base<float> vec2; |
| 162 | typedef vector2_base<bool> bvec2; |
| 163 | typedef vector2_base<int> ivec2; |
| 164 | |
| 165 | template<Numeric T> |
| 166 | constexpr bool closest_point_on_line(vector2_base<T> line_pointA, vector2_base<T> line_pointB, vector2_base<T> target_point, vector2_base<T> &out_pos) |
| 167 | { |
| 168 | vector2_base<T> AB = line_pointB - line_pointA; |
| 169 | T SquaredMagnitudeAB = dot(AB, AB); |
| 170 | if(SquaredMagnitudeAB > 0) |
| 171 | { |
| 172 | vector2_base<T> AP = target_point - line_pointA; |
| 173 | T APdotAB = dot(AP, AB); |
| 174 | T t = APdotAB / SquaredMagnitudeAB; |
| 175 | out_pos = line_pointA + AB * std::clamp(t, (T)0, (T)1); |
| 176 | return true; |
| 177 | } |
| 178 | else |
| 179 | return false; |
| 180 | } |
| 181 | |
| 182 | constexpr int intersect_line_circle(const vec2 LineStart, const vec2 LineEnd, const vec2 CircleCenter, float Radius, vec2 aIntersections[2]) |
| 183 | { |
| 184 | vec2 Delta = LineEnd - LineStart; |
| 185 | vec2 Offset = LineStart - CircleCenter; |
| 186 | |
| 187 | // A * Time^2 + B * Time + c == 0 |
| 188 | float A = length_squared(a: Delta); |
| 189 | float B = 2.0f * dot(a: Offset, b: Delta); |
| 190 | float C = dot(a: Offset, b: Offset) - Radius * Radius; |
| 191 | |
| 192 | float Discriminant = B * B - 4.0f * A * C; |
| 193 | if(Discriminant < 0.0f || A == 0.0f) |
| 194 | { |
| 195 | // no intersection |
| 196 | return 0; |
| 197 | } |
| 198 | else if(Discriminant == 0.0f) |
| 199 | { |
| 200 | // tangent |
| 201 | float Time = -B / (2.0f * A); |
| 202 | aIntersections[0] = LineStart + Delta * Time; |
| 203 | return 1; |
| 204 | } |
| 205 | else |
| 206 | { |
| 207 | Discriminant = std::sqrt(x: Discriminant); |
| 208 | float Time1 = (-B - Discriminant) / (2.0f * A); |
| 209 | float Time2 = (-B + Discriminant) / (2.0f * A); |
| 210 | |
| 211 | aIntersections[0] = LineStart + Delta * Time1; |
| 212 | aIntersections[1] = LineStart + Delta * Time2; |
| 213 | |
| 214 | return 2; |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | // ------------------------------------ |
| 219 | template<Numeric T> |
| 220 | class vector3_base |
| 221 | { |
| 222 | public: |
| 223 | union |
| 224 | { |
| 225 | T x, r, h, u; |
| 226 | }; |
| 227 | union |
| 228 | { |
| 229 | T y, g, s, v; |
| 230 | }; |
| 231 | union |
| 232 | { |
| 233 | T z, b, l, w; |
| 234 | }; |
| 235 | |
| 236 | constexpr vector3_base() = default; |
| 237 | constexpr vector3_base(T nx, T ny, T nz) : |
| 238 | x(nx), y(ny), z(nz) |
| 239 | { |
| 240 | } |
| 241 | |
| 242 | constexpr vector3_base operator-(const vector3_base &vec) const { return vector3_base(x - vec.x, y - vec.y, z - vec.z); } |
| 243 | constexpr vector3_base operator-() const { return vector3_base(-x, -y, -z); } |
| 244 | constexpr vector3_base operator+(const vector3_base &vec) const { return vector3_base(x + vec.x, y + vec.y, z + vec.z); } |
| 245 | constexpr vector3_base operator*(const T rhs) const { return vector3_base(x * rhs, y * rhs, z * rhs); } |
| 246 | constexpr vector3_base operator*(const vector3_base &vec) const { return vector3_base(x * vec.x, y * vec.y, z * vec.z); } |
| 247 | constexpr vector3_base operator/(const T rhs) const { return vector3_base(x / rhs, y / rhs, z / rhs); } |
| 248 | constexpr vector3_base operator/(const vector3_base &vec) const { return vector3_base(x / vec.x, y / vec.y, z / vec.z); } |
| 249 | |
| 250 | constexpr vector3_base &operator+=(const vector3_base &vec) |
| 251 | { |
| 252 | x += vec.x; |
| 253 | y += vec.y; |
| 254 | z += vec.z; |
| 255 | return *this; |
| 256 | } |
| 257 | constexpr vector3_base &operator-=(const vector3_base &vec) |
| 258 | { |
| 259 | x -= vec.x; |
| 260 | y -= vec.y; |
| 261 | z -= vec.z; |
| 262 | return *this; |
| 263 | } |
| 264 | constexpr vector3_base &operator*=(const T rhs) |
| 265 | { |
| 266 | x *= rhs; |
| 267 | y *= rhs; |
| 268 | z *= rhs; |
| 269 | return *this; |
| 270 | } |
| 271 | constexpr vector3_base &operator*=(const vector3_base &vec) |
| 272 | { |
| 273 | x *= vec.x; |
| 274 | y *= vec.y; |
| 275 | z *= vec.z; |
| 276 | return *this; |
| 277 | } |
| 278 | constexpr vector3_base &operator/=(const T rhs) |
| 279 | { |
| 280 | x /= rhs; |
| 281 | y /= rhs; |
| 282 | z /= rhs; |
| 283 | return *this; |
| 284 | } |
| 285 | constexpr vector3_base &operator/=(const vector3_base &vec) |
| 286 | { |
| 287 | x /= vec.x; |
| 288 | y /= vec.y; |
| 289 | z /= vec.z; |
| 290 | return *this; |
| 291 | } |
| 292 | |
| 293 | constexpr bool operator==(const vector3_base &vec) const { return x == vec.x && y == vec.y && z == vec.z; } // TODO: do this with an eps instead |
| 294 | constexpr bool operator!=(const vector3_base &vec) const { return x != vec.x || y != vec.y || z != vec.z; } |
| 295 | }; |
| 296 | |
| 297 | template<Numeric T> |
| 298 | inline T distance(const vector3_base<T> &a, const vector3_base<T> &b) |
| 299 | { |
| 300 | return length(a - b); |
| 301 | } |
| 302 | |
| 303 | template<Numeric T> |
| 304 | constexpr T dot(const vector3_base<T> &a, const vector3_base<T> &b) |
| 305 | { |
| 306 | return a.x * b.x + a.y * b.y + a.z * b.z; |
| 307 | } |
| 308 | |
| 309 | template<Numeric T> |
| 310 | constexpr vector3_base<T> cross(const vector3_base<T> &a, const vector3_base<T> &b) |
| 311 | { |
| 312 | return vector3_base<T>( |
| 313 | a.y * b.z - a.z * b.y, |
| 314 | a.z * b.x - a.x * b.z, |
| 315 | a.x * b.y - a.y * b.x); |
| 316 | } |
| 317 | |
| 318 | // |
| 319 | inline float length(const vector3_base<float> &a) |
| 320 | { |
| 321 | return std::sqrt(x: dot(a, b: a)); |
| 322 | } |
| 323 | |
| 324 | inline vector3_base<float> normalize(const vector3_base<float> &v) |
| 325 | { |
| 326 | float divisor = length(a: v); |
| 327 | if(divisor == 0.0f) |
| 328 | return vector3_base<float>(0.0f, 0.0f, 0.0f); |
| 329 | float l = 1.0f / divisor; |
| 330 | return vector3_base<float>(v.x * l, v.y * l, v.z * l); |
| 331 | } |
| 332 | |
| 333 | typedef vector3_base<float> vec3; |
| 334 | typedef vector3_base<bool> bvec3; |
| 335 | typedef vector3_base<int> ivec3; |
| 336 | |
| 337 | // ------------------------------------ |
| 338 | |
| 339 | template<Numeric T> |
| 340 | class vector4_base |
| 341 | { |
| 342 | public: |
| 343 | union |
| 344 | { |
| 345 | T x, r, h; |
| 346 | }; |
| 347 | union |
| 348 | { |
| 349 | T y, g, s; |
| 350 | }; |
| 351 | union |
| 352 | { |
| 353 | T z, b, l; |
| 354 | }; |
| 355 | union |
| 356 | { |
| 357 | T w, a; |
| 358 | }; |
| 359 | |
| 360 | constexpr vector4_base() = default; |
| 361 | constexpr vector4_base(T nx, T ny, T nz, T nw) : |
| 362 | x(nx), y(ny), z(nz), w(nw) |
| 363 | { |
| 364 | } |
| 365 | |
| 366 | constexpr vector4_base operator+(const vector4_base &vec) const { return vector4_base(x + vec.x, y + vec.y, z + vec.z, w + vec.w); } |
| 367 | constexpr vector4_base operator-(const vector4_base &vec) const { return vector4_base(x - vec.x, y - vec.y, z - vec.z, w - vec.w); } |
| 368 | constexpr vector4_base operator-() const { return vector4_base(-x, -y, -z, -w); } |
| 369 | constexpr vector4_base operator*(const vector4_base &vec) const { return vector4_base(x * vec.x, y * vec.y, z * vec.z, w * vec.w); } |
| 370 | constexpr vector4_base operator*(const T rhs) const { return vector4_base(x * rhs, y * rhs, z * rhs, w * rhs); } |
| 371 | constexpr vector4_base operator/(const vector4_base &vec) const { return vector4_base(x / vec.x, y / vec.y, z / vec.z, w / vec.w); } |
| 372 | constexpr vector4_base operator/(const T vec) const { return vector4_base(x / vec, y / vec, z / vec, w / vec); } |
| 373 | |
| 374 | constexpr vector4_base &operator+=(const vector4_base &vec) |
| 375 | { |
| 376 | x += vec.x; |
| 377 | y += vec.y; |
| 378 | z += vec.z; |
| 379 | w += vec.w; |
| 380 | return *this; |
| 381 | } |
| 382 | constexpr vector4_base &operator-=(const vector4_base &vec) |
| 383 | { |
| 384 | x -= vec.x; |
| 385 | y -= vec.y; |
| 386 | z -= vec.z; |
| 387 | w -= vec.w; |
| 388 | return *this; |
| 389 | } |
| 390 | constexpr vector4_base &operator*=(const T rhs) |
| 391 | { |
| 392 | x *= rhs; |
| 393 | y *= rhs; |
| 394 | z *= rhs; |
| 395 | w *= rhs; |
| 396 | return *this; |
| 397 | } |
| 398 | constexpr vector4_base &operator*=(const vector4_base &vec) |
| 399 | { |
| 400 | x *= vec.x; |
| 401 | y *= vec.y; |
| 402 | z *= vec.z; |
| 403 | w *= vec.w; |
| 404 | return *this; |
| 405 | } |
| 406 | constexpr vector4_base &operator/=(const T rhs) |
| 407 | { |
| 408 | x /= rhs; |
| 409 | y /= rhs; |
| 410 | z /= rhs; |
| 411 | w /= rhs; |
| 412 | return *this; |
| 413 | } |
| 414 | constexpr vector4_base &operator/=(const vector4_base &vec) |
| 415 | { |
| 416 | x /= vec.x; |
| 417 | y /= vec.y; |
| 418 | z /= vec.z; |
| 419 | w /= vec.w; |
| 420 | return *this; |
| 421 | } |
| 422 | |
| 423 | constexpr bool operator==(const vector4_base &vec) const { return x == vec.x && y == vec.y && z == vec.z && w == vec.w; } // TODO: do this with an eps instead |
| 424 | constexpr bool operator!=(const vector4_base &vec) const { return x != vec.x || y != vec.y || z != vec.z || w != vec.w; } |
| 425 | }; |
| 426 | |
| 427 | typedef vector4_base<float> vec4; |
| 428 | typedef vector4_base<bool> bvec4; |
| 429 | typedef vector4_base<int> ivec4; |
| 430 | typedef vector4_base<uint8_t> ubvec4; |
| 431 | |
| 432 | #endif |
| 433 | |